-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
378 lines (281 loc) · 11.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import tensorflow as tf
import cv2, glob, os, math, time, skvideo.io
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageFilter
from tensorflow import keras
import segmentation_models as sm
# Used input
input_num = 1
# Training parameter
test_size = 0.2
random_seed = 42
# Hyperparameter
epoch = 50
batch_size = 32
learning_rate = 0.001
n_encoder_decoder = 1
initial_filter = 8
image_size = (720, 720)
# Metric Function
class MaxMeanIoU(tf.keras.metrics.MeanIoU):
def update_state(self, y_true, y_pred, sample_weight=None):
return super().update_state(tf.argmax(y_true, axis=-1), tf.argmax(y_pred, axis=-1), sample_weight)
def nothing(x):
# any operation
pass
# Loss Function
def dice_loss(y_true, y_pred, num_classes=2):
smooth = tf.keras.backend.epsilon()
dice = 0
for index in range(num_classes):
y_true_f = tf.keras.backend.flatten(y_true[:,:,:,index])
y_pred_f = tf.keras.backend.flatten(y_pred[:,:,:,index])
intersection = tf.keras.backend.sum(y_true_f * y_pred_f)
union = tf.keras.backend.sum(y_true_f) + \
tf.keras.backend.sum(y_pred_f)
dice += (2. * intersection + smooth) / (union + smooth)
return 1 - dice/num_classes
# Upsampling layer
def upsampling2d_nearest(x, upsampling_factor_height, upsampling_factor_width):
w = x.shape[2] * upsampling_factor_width
h = x.shape[1] * upsampling_factor_height
return tf.compat.v1.image.resize_nearest_neighbor(x, (h, w))
#======================================= Create model =======================================#
def create_model():
# Variable
encoder_layers = []
# Input
input_shape = (image_size[0], image_size[1], 3)
inputs = tf.keras.layers.Input(shape=input_shape)
x = inputs
# Encoder
for i in range(n_encoder_decoder):
filter_number = int(2**(math.log2(initial_filter)+i))
x = tf.keras.layers.Conv2D(filter_number, 3, \
activation='relu', padding='same')(x)
x = tf.keras.layers.Conv2D(filter_number, 3, \
activation='relu', padding='same')(x)
encoder_layers.append(x)
x = tf.keras.layers.MaxPool2D()(x)
print(filter_number)
# Bridge
filter_number = int(2**(math.log2(initial_filter)+\
n_encoder_decoder))
x = tf.keras.layers.Conv2D(filter_number, 3, \
activation='relu', padding='same')(x)
x = tf.keras.layers.Conv2D(filter_number, 3, \
activation='relu', padding='same')(x)
print(filter_number)
# Decoder
for i in reversed(range(n_encoder_decoder)):
filter_number = int(2**(math.log2(initial_filter)+i))
x = tf.keras.layers.Lambda(upsampling2d_nearest, \
arguments={'upsampling_factor_height': 2, \
'upsampling_factor_width': 2})(x)
x = tf.keras.layers.Concatenate(axis=3)([x, encoder_layers[i]])
x = tf.keras.layers.Conv2D(filter_number, 3, activation='relu', padding='same')(x)
x = tf.keras.layers.Conv2D(filter_number, 3, activation='relu', padding='same')(x)
print(filter_number)
# Output
outputs = tf.keras.layers.Conv2D(2, 1)(x)
outputs = tf.keras.layers.Lambda(lambda x: tf.nn.softmax(x))(outputs)
# Create Optimizer
opt = tf.keras.optimizers.Adam(learning_rate=learning_rate)
# Create Loss Function
loss = dice_loss
# Create Model
model = tf.keras.models.Model(inputs=[inputs], outputs=[outputs])
model.compile(optimizer = opt, loss = loss, metrics=["accuracy", MaxMeanIoU(num_classes=2)])
return model
#============================================================================================#
def get_angle(lines):
x1,y1,x2,y2 = lines
x,y=x1-x2, y1-y2
angle = math.atan2(y,x)
return angle
def long_line(lines):
x1,y1,x2,y2 = lines
x,y=x1-x2, y1-y2
m = y/x
x1_new = 0
x2_new = image_size[1]
# Jika y1_new negatif, artinya point berada di luar image array
y1_new = m * (x1_new - x1) + y1
if y1_new < 0 or y1_new > image_size[0]:
y1_new = 0
x1_new = (y1_new - y1) / m + x1
y2_new = m * (x2_new - x1) + y1
if y2_new < 0 or y2_new > image_size[0]:
y2_new = 0
x2_new = (y2_new - y1) / m + x1
x1_new = int(x1_new)
x2_new = int(x2_new)
y1_new = int(y1_new)
y2_new = int(y2_new)
new_point = [x1_new, y1_new, x2_new, y2_new]
return new_point
# Hough Transform Function
def hough_transform(edge, out):
# Variables
x1_arr = []
x2_arr = []
y1_arr = []
y2_arr = []
edge = cv2.cvtColor(edge, cv2.COLOR_RGB2GRAY)
lines = cv2.HoughLinesP(edge, rho=1, theta=np.pi/180, threshold=100, minLineLength=100, maxLineGap=50)
for line in lines:
sudut = get_angle(line[0])
sudut = abs(sudut)
x1,y1,x2,y2 = line[0]
if sudut < 2.9 :
# Filter out the lines in the top op the image
if (y1>50 or y2>50):
if (x1>10 and x1 <710) or (x2>10 and x2<710):
x1_arr.append(x1)
x2_arr.append(x2)
y1_arr.append(y1)
y2_arr.append(y2)
cv2.line(out, (x1,y1), (x2,y2), (255,0,0), 3)
return out
# Contour Function
def detect_contour(img, img_ori):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
contours, hierarchy = cv2.findContours(gray, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
img_zero = np.zeros((img.shape))
lar_idx = 0
lar_area = 0
sec_lar_idx = 0
sec_lar_area = 0
area_tol = cv2.getTrackbarPos("Area Tolerance", "Trackbars")
for index in range(len(contours)):
area = cv2.contourArea(contours[index])
if area > lar_area:
if area > area_tol:
lar_idx = index
lar_area = area
for index in range(len(contours)):
area = cv2.contourArea(contours[index])
if lar_area > area and sec_lar_area < area:
if area > area_tol:
sec_lar_idx = index
sec_lar_area = area
# if area > 55000:
# cv2.drawContours(img_zero, contours[index], -1, (255,255,255), 3)
if lar_idx != 0:
cv2.drawContours(img_zero, contours[lar_idx], -1, (255,255,255), 3)
cv2.drawContours(img_zero, contours[sec_lar_idx], -1, (255,255,255), 3)
cv2.drawContours(img_ori, contours[lar_idx], -1, (36,255,12), 3)
cv2.drawContours(img_ori, contours[sec_lar_idx], -1, (36,255,12), 3)
# epsilon = 1 * cv2.arcLength(contours[lar_idx], True)
# approx = cv2.approxPolyDP(contours[lar_idx], epsilon, True)
# cv2.drawContours(img_zero, [approx], -1, (255,255,255), 3)
# cv2.drawContours(img_ori, [approx], -1, (36,255,12), 3)
# epsilon = 1 * cv2.arcLength(contours[sec_lar_idx], True)
# approx = cv2.approxPolyDP(contours[sec_lar_idx], epsilon, True)
# cv2.drawContours(img_zero, [approx], -1, (255,255,255), 3)
# cv2.drawContours(img_ori, [approx], -1, (36,255,12), 3)
# print(sec_lar_idx)
# print(lar_idx)
return img_zero, img_ori
# Fill Function
def fill_area(img):
# Set Image to Gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
# Fill Area
cv2.fillPoly(img, cnts, [255,255,255])
return img
# Variables
masks_aspalt = []
masks_edge =[]
model = create_model()
model_path = os.path.join("model/model_1.h5")
model.load_weights(model_path)
tf.debugging.set_log_device_placement(True)
# Video Writer
outputfile = "video/output/output_video_"+ str(input_num) +".mp4"
size = (720, 720)
fps = 20
fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
writer = cv2.VideoWriter(outputfile, fourcc, fps, size)
# Load Video
video_path = os.path.join("video/input/input_video_"+ str(input_num) +".mp4")
cap = cv2.VideoCapture(video_path)
# Create Trackbars
cv2.namedWindow("Trackbars")
cv2.createTrackbar("Treshold", "Trackbars", 10, 100, nothing)
cv2.createTrackbar("Lower Limit", "Trackbars", 25, 179, nothing)
cv2.createTrackbar("Upper Limit", "Trackbars", 87, 179, nothing)
cv2.createTrackbar("Area Tolerance", "Trackbars", 50000, 90000, nothing)
while(cap.isOpened()):
start_time = time.time()
ret, frame = cap.read()
# frame = cv2.imread("training_dataset/images/1_11.jpg")
if True:
image_height = frame.shape[0]
image_width = frame.shape[1]
frame = frame[0:image_height, (image_width-image_height)//2:(image_width-image_height)//2+image_height]
frame_ori = frame.copy()
frame = cv2.resize(frame, image_size)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.normalize(frame, None, 0, 1, cv2.NORM_MINMAX, cv2.CV_32F)
# Predict mask
pred = model.predict(np.expand_dims(frame, 0))
range_tresh = cv2.getTrackbarPos("Treshold", "Trackbars") / 10000
# Process mask
mask = pred.squeeze()
mask = np.stack((mask,)*3, axis=-1)
mask[mask >= range_tresh] = 255
mask[mask < range_tresh ] = 0
mask_aspalt = mask[:, :, 1]
mask_aspalt = np.uint8(mask_aspalt)
lower_hue = cv2.getTrackbarPos("Lower Limit", "Trackbars")
upper_hue = cv2.getTrackbarPos("Upper Limit", "Trackbars")
lower_green = np.array([lower_hue,0,0], dtype=np.uint8)
upper_green = np.array([upper_hue,255,255], dtype=np.uint8)
# Threshold the HSV image to get only green colors
hsv = cv2.cvtColor(frame_ori, cv2.COLOR_BGR2HSV)
mask_green = cv2.inRange(hsv, lower_green, upper_green)
mask_green = cv2.bitwise_not(mask_green)
mask_green = cv2.resize(mask_green, image_size)
mask_green = np.stack((mask_green,)*3, axis=-1)
mask_all = cv2.bitwise_and(mask_aspalt, mask_green)
# Process Edge
edge, frame_ori = detect_contour(mask_all, frame_ori)
edge = np.uint8(edge)
# Edge Filled
edge_filled = fill_area(edge)
# Hough Transform
# frame_ori = hough_transform(edge, frame_ori)
masks_aspalt.append(mask_aspalt)
masks_edge.append(edge)
#Show Video
cv2.namedWindow("Model Predict", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Model Predict", cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN)
cv2.imshow("Model Predict", mask_aspalt)
cv2.namedWindow("Contour", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Contour", cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN)
cv2.imshow("Contour", edge)
cv2.namedWindow("Road", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Road", cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN)
cv2.imshow("Road", frame_ori)
cv2.namedWindow("Filled", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Filled", cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN)
cv2.imshow("Filled", edge_filled)
cv2.namedWindow("Mask Green", cv2.WND_PROP_FULLSCREEN)
cv2.setWindowProperty("Mask Green", cv2.WND_PROP_FULLSCREEN, cv2.WND_PROP_FULLSCREEN)
cv2.imshow("Mask Green", mask_green)
writer.write(frame_ori)
# Stop when "q" is pressed
if cv2.waitKey(25) & 0xFF == ord('q'):
break
else:
break
# Stop Video
print("Video Ended")
writer.release()
cap.release()
cv2.destroyAllWindows()