-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconditional_and_marginal_epistasis.py
325 lines (301 loc) · 16.9 KB
/
conditional_and_marginal_epistasis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import numpy as np
__author__ = "@gavruskin"
# Adds missing 0's in front the genotype to make it of length n.
def genotype_look_good(genotype, n):
output = str(genotype)
for i in range(n - len(genotype)):
output = "0" + output
return output
# Returns a file with comprehensive analysis of conditional epistasis.
# TODO: update and finish this.
# data is a dictionary, num_sites == total number of sites,
def conditional_two_way_interaction_analysis(data):
number_trials = 0
for genotype in data:
number_trials = len(data[genotype])
break
print("Missing data is currently not supported by conditional two-way interaction analysis. "
"Make sure your fitness values do not have missing data.\n")
# TODO: Add support for missing data.
n = 0 # Number of sites.
for genotype in data:
if len(genotype) > n:
n = len(genotype)
m = 2 ** (n - 2) # Number of sequence to condition on
for genotype in data: # Make the genotypes look good (all of the same length):
data[genotype_look_good(genotype, n)] = data.pop(genotype)
output_file = open("outputs/conditional_two_way_epistasis_analysis.md", "w")
output_file.write("This file has been created using software package Fitlands "
"(Alex Gavryushkin, CBG, D-BSSE, ETH Zurich).\n"
"Please refer to [https://github.com/gavruskin/fitlands] for legal matters, "
"to obtain up-to-date bibliographic information for Fitlands, "
"and to stay tuned.\n"
"If you publish the results obtained with the help of this software, "
"please don't forget to cite us.\n")
output_file.write("\n\n# Conditional two-way interaction analysis\n\n")
epi_matrix = np.empty([number_trials, n, n, m], dtype=float) # Compute epistasis.
for trial in range(number_trials):
for i in range(n):
for j in range(i + 1, n):
for k in range(m): # Loop through sites (i, j) to find the interaction conditioning on genotype #k.
epi = 0
genotype_condition = genotype_look_good("{0:b}".format(k), n - 2)
for genotype in data:
genotype_background = genotype[:i] + genotype[i + 1:j] + genotype[j + 1:]
if genotype_background == genotype_condition:
if genotype[i] == genotype[j] == "0" or genotype[i] == genotype[j] == "1":
epi += data[genotype][trial]
elif (genotype[i] == "0" and genotype[j] == "1") or \
(genotype[i] == "1" and genotype[j] == "0"):
epi -= data[genotype][trial]
else:
print(
"Attention! Your genotypes contain entries different from 0 and 1. "
"Those are skipped.")
epi_matrix[trial][i][j][k] = epi
for i in range(n):
for j in range(i + 1, n):
output_file.write("\n## Locus %s and %s\n\n" % (i + 1, j + 1))
for k in range(m):
for trial in range(number_trials):
output_file.write("Conditioning on %s, the interaction (epistasis) in trial %s is %s\n" %
(genotype_look_good("{0:b}".format(k), n - 2), trial + 1, epi_matrix[trial][i][j][k]))
if i != n - 2 or j != n - 1 or k != m - 1:
output_file.write("\n")
output_file.close()
print("The output has been written into file two_way_epistasis_analysis.md in the ./outputs directory.\n")
return epi_matrix
# Returns a file with comprehensive analysis of marginal two-way epistasis epistasis.
# data is a dictionary with genotypes as keys and fitness values across the trials as a list.
def marginal_two_way_interaction_analysis(data):
number_trials = 0
for genotype in data:
number_trials = len(data[genotype])
break
print("Missing data is currently not supported by two-way interaction analysis. "
"Make sure your fitness values do not have missing data.\n")
# TODO: Add support for missing data.
n = 0 # Number of sites.
for genotype in data:
if len(genotype) > n:
n = len(genotype)
for genotype in data: # Make the genotypes look good (all of the same length):
data[genotype_look_good(genotype, n)] = data.pop(genotype)
output_file = open("outputs/two_way_epistasis_analysis.md", "w")
output_file.write("This file has been created using software package Fitlands "
"(Alex Gavryushkin, CBG, D-BSSE, ETH Zurich).\n"
"Please refer to [https://github.com/gavruskin/fitlands] for legal matters, "
"to obtain up-to-date bibliographic information for Fitlands, "
"and to stay tuned.\n"
"If you publish the results obtained with the help of this software, "
"please don't forget to cite us.\n")
output_file.write("\n\n# Marginal two-way interaction (epistasis) analysis\n")
epi_matrix = np.empty([number_trials, n, n], dtype=float) # Compute epistasis.
for trial in range(number_trials):
for i in range(n):
for j in range(i + 1, n): # Loop through pairs of sites (i, j) to find marginal epistasis between i and j.
epi = 0
for genotype in data:
if genotype[i] == genotype[j] == "0" or genotype[i] == genotype[j] == "1":
epi += data[genotype][trial]
elif (genotype[i] == "0" and genotype[j] == "1") or (genotype[i] == "1" and genotype[j] == "0"):
epi -= data[genotype][trial]
else:
print("Attention! Your genotypes contain entries different from 0 and 1. Those are skipped.")
epi_matrix[trial][i][j] = epi
epi_pos_percent = np.empty([n, n], dtype=float) # Compute summaries of epistasis.
epi_neg_percent = np.empty([n, n], dtype=float)
epi_zero_percent = np.empty([n, n], dtype=float)
epi_pos_sites = []
epi_neg_sites = []
epi_zero_sites = []
epi_suspected_pos_sites = [] # With all >= 0 and all but one > 0. TODO: This has to be based on a stats test.
epi_suspected_neg_sites = []
epi_suspected_zero_sites = []
for i in range(n):
for j in range(i + 1, n):
epi_pos_count = 0
epi_neg_count = 0
epi_zero_count = 0
for trial in range(number_trials):
if epi_matrix[trial][i][j] > 0:
epi_pos_count += 1
elif epi_matrix[trial][i][j] < 0:
epi_neg_count += 1
else:
epi_zero_count += 1
epi_pos_percent[i][j] = 100 * epi_pos_count / float(number_trials)
epi_neg_percent[i][j] = 100 * epi_neg_count / float(number_trials)
epi_zero_percent[i][j] = 100 * epi_zero_count / float(number_trials)
if epi_pos_percent[i][j] == 100:
epi_pos_sites.append([i, j])
elif epi_neg_percent[i][j] == 100:
epi_neg_sites.append([i, j])
elif epi_zero_percent[i][j] == 100:
epi_zero_sites.append([i, j])
if epi_zero_count == 1:
if epi_pos_count == number_trials - 1:
epi_suspected_pos_sites.append([i, j])
elif epi_neg_count == number_trials - 1:
epi_suspected_neg_sites.append([i, j])
elif epi_zero_count == number_trials - 1:
epi_suspected_zero_sites.append([i, j])
output_file.write("\n\n## Summary\n") # Write summaries to file.
output_file.write("\nSites with positive marginal two-way epistasis: ")
for sites in epi_pos_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\nSites with negative marginal two-way epistasis: ")
for sites in epi_neg_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\nSites with no marginal two-way epistasis: ")
for sites in epi_zero_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\n")
output_file.write("\nSites with suspected positive epistasis: ")
for sites in epi_suspected_pos_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\nSites with suspected negative epistasis: ")
for sites in epi_suspected_neg_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\nSites with suspected absence of epistasis:")
for sites in epi_suspected_zero_sites:
output_file.write("(%s, %s) " % (sites[0] + 1, sites[1] + 1))
output_file.write("\n")
output_file.write("\n\n## Epistasis values sorted by sites\n\n") # Write raw values with fractions to file.
for i in range(n):
for j in range(i + 1, n):
output_file.write("Sites %s and %s:\n" % (i + 1, j + 1))
output_file.write("Probability of positive epistasis is: %s%%\n"
"Probability of negative epistasis is: %s%%\n"
"Probability of no epistasis is: %s%%\n"
% (round(epi_pos_percent[i][j], 2), round(epi_neg_percent[i][j], 2),
round(epi_zero_percent[i][j], 2)))
for trial in range(number_trials):
output_file.write("Epistasis value for sites %s and %s in trial %s is %s\n"
% (i + 1, j + 1, trial + 1, epi_matrix[trial][i][j]))
output_file.write("\n")
output_file.close()
print("The output has been written into file two_way_epistasis_analysis.md in the ./outputs directory.\n")
return epi_matrix
def marginal_three_way_interaction_analysis(data):
number_trials = 0
for genotype in data:
number_trials = len(data[genotype])
break
print("Missing data is currently not supported by three-way interaction analysis. "
"Make sure your fitness values do not have missing data.\n")
# TODO: Add support for missing data.
n = 0 # Number of sites.
for genotype in data:
if len(genotype) > n:
n = len(genotype)
for genotype in data: # Make the genotypes look good (all of the same length):
data[genotype_look_good(genotype, n)] = data.pop(genotype)
output_file = open("outputs/three_way_epistasis_analysis.md", "w")
output_file.write("This file has been created using software package Fitlands "
"(Alex Gavryushkin, CBG, D-BSSE, ETH Zurich).\n"
"Please refer to [https://github.com/gavruskin/fitlands] for legal matters, "
"to obtain up-to-date bibliographic information for Fitlands, "
"and to stay tuned.\n"
"If you publish the results obtained with the help of this software, "
"please don't forget to cite us.\n")
output_file.write("\n\n# Marginal three-way interaction analysis\n")
epi_matrix = np.empty([number_trials, n, n, n], dtype=float) # Compute epistasis.
for trial in range(number_trials):
for i in range(n):
for j in range(i + 1, n):
for k in range(j + 1, n): # Loop through sites (i, j, k) to find marginal interaction (u_111).
epi = 0
for genotype in data:
count_ones = 0
if genotype[i] == "1":
count_ones += 1
if genotype[j] == "1":
count_ones += 1
if genotype[k] == "1":
count_ones += 1
if (genotype[i] != "0" and genotype[i] != "1") or (genotype[j] != "0" and genotype[j] != "1") \
or (genotype[k] != "0" and genotype[k] != "1"):
print("Attention! Your genotypes contain entries different from 0 and 1."
"Those are set to 0.")
if count_ones % 2 == 0:
epi += data[genotype][trial]
else:
epi -= data[genotype][trial]
epi_matrix[trial][i][j][k] = epi
epi_pos_percent = np.empty([n, n, n], dtype=float) # Compute summaries of epistasis.
epi_neg_percent = np.empty([n, n, n], dtype=float)
epi_zero_percent = np.empty([n, n, n], dtype=float)
epi_pos_sites = []
epi_neg_sites = []
epi_zero_sites = []
epi_suspected_pos_sites = [] # With all >= 0 and all but one > 0. TODO: This has to be based on a stats test.
epi_suspected_neg_sites = []
epi_suspected_zero_sites = []
for i in range(n):
for j in range(i + 1, n):
for k in range(j + 1, n):
epi_pos_count = 0
epi_neg_count = 0
epi_zero_count = 0
for trial in range(number_trials):
if epi_matrix[trial][i][j][k] > 0:
epi_pos_count += 1
elif epi_matrix[trial][i][j][k] < 0:
epi_neg_count += 1
else:
epi_zero_count += 1
epi_pos_percent[i][j][k] = 100 * epi_pos_count / float(number_trials)
epi_neg_percent[i][j][k] = 100 * epi_neg_count / float(number_trials)
epi_zero_percent[i][j][k] = 100 * epi_zero_count / float(number_trials)
if epi_pos_percent[i][j][k] == 100:
epi_pos_sites.append([i, j, k])
elif epi_neg_percent[i][j][k] == 100:
epi_neg_sites.append([i, j, k])
elif epi_zero_percent[i][j][k] == 100:
epi_zero_sites.append([i, j, k])
if epi_zero_count == 1:
if epi_pos_count == number_trials - 1:
epi_suspected_pos_sites.append([i, j, k])
elif epi_neg_count == number_trials - 1:
epi_suspected_neg_sites.append([i, j, k])
elif epi_zero_count == number_trials - 1:
epi_suspected_zero_sites.append([i, j, k])
output_file.write("\n\n## Summary\n") # Write summaries to file.
output_file.write("\nSites with positive marginal three-way interaction: ")
for sites in epi_pos_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\nSites with negative marginal three-way interaction: ")
for sites in epi_neg_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\nSites with no marginal three-way interaction: ")
for sites in epi_zero_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\n")
output_file.write("\nSites with suspected positive three-way interaction: ")
for sites in epi_suspected_pos_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\nSites with suspected negative three-way interaction: ")
for sites in epi_suspected_neg_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\nSites with suspected absence of three-way interaction:")
for sites in epi_suspected_zero_sites:
output_file.write("(%s, %s, %s) " % (sites[0] + 1, sites[1] + 1, sites[2] + 1))
output_file.write("\n")
output_file.write("\n\n## Epistasis values sorted by sites\n\n") # Write raw values with fractions to file.
for i in range(n):
for j in range(i + 1, n):
for k in range(j + 1, n):
output_file.write("Sites %s, %s, %s:\n" % (i + 1, j + 1, k + 1))
output_file.write("Probability of positive three-way interaction is: %s%%\n"
"Probability of negative three-way interaction is: %s%%\n"
"Probability of no three-way interaction is: %s%%\n"
% (round(epi_pos_percent[i][j][k], 2), round(epi_neg_percent[i][j][k], 2),
round(epi_zero_percent[i][j][k], 2)))
for trial in range(number_trials):
output_file.write("Interaction value for sites %s, %s, %s in trial %s is %s\n"
% (i + 1, j + 1, k + 1, trial + 1, epi_matrix[trial][i][j][k]))
output_file.write("\n")
output_file.close()
print("The output has been written into file three_way_epistasis_analysis.md in the ./outputs directory.\n")
return epi_matrix