-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_max_likelyhood.py
66 lines (59 loc) · 2.68 KB
/
models_max_likelyhood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import random
from models_HIV_2007 import datafile_hiv_process
from three_way_epistasis import epistasis_positive, epistasis_negative
import numpy
__author__ = '@gavruskin'
# Given fitness profile (e.g. one returned by datafile_hiv_process),
# generates n samples of pairwise comparisons of fitness.
# The output is a matrix with i,j being the number of times i has higher fitness than j.
# w_000 = w[0], w_001 = w[1], w_010 = w[2], w_100 = w[3], w_011 = w[4], w_101 = w[5], w_110 = w[6], w_111 = w[7]:^
def sample_ranks_randomly(fit_data_list, n):
output = [[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0]]
for sample in range(n):
for i in range(8):
for j in range(8):
if i != j:
f_i_rand = random.randint(0, len(fit_data_list[i]) - 1)
f_j_rand = random.randint(0, len(fit_data_list[j]) - 1)
if fit_data_list[i][f_i_rand] > fit_data_list[j][f_j_rand]:
output[i][j] += 1
elif fit_data_list[i][f_i_rand] < fit_data_list[j][f_j_rand]:
output[j][i] += 1
return output
def simulate_competition_experiment_from_hiv_data():
f = datafile_hiv_process()
f_means = [numpy.mean(f[0]), numpy.mean(f[1]), numpy.mean(f[2]), numpy.mean(f[3]),
numpy.mean(f[4]), numpy.mean(f[5]), numpy.mean(f[6]), numpy.mean(f[7])]
mean_f0 = numpy.mean(f[0])
f_means_shifted = numpy.subtract(f_means, [mean_f0, mean_f0, mean_f0, mean_f0, mean_f0, mean_f0, mean_f0, mean_f0])
print(f_means)
print(f_means_shifted)
rankings = sample_ranks_randomly(f, 1000)
for s in range(len(rankings)):
print(rankings[s])
def get_epistasis_from_top_10_maxlik_rankings():
g = [[8, 3, 6, 2, 7, 4, 5, 1],
[8, 3, 7, 2, 4, 6, 5, 1],
[2, 8, 6, 4, 7, 3, 5, 1],
[8, 2, 3, 6, 7, 4, 5, 1],
[2, 3, 8, 7, 6, 4, 1, 5],
[7, 3, 6, 5, 8, 2, 4, 1],
[8, 3, 7, 6, 5, 2, 1, 4],
[8, 4, 5, 7, 2, 6, 3, 1],
[2, 8, 5, 4, 3, 7, 6, 1],
[8, 2, 3, 7, 6, 5, 4, 1]]
positives = {1, 5, 6, 7}
negatives = {4, 3, 2, 8}
repetitions = [1, 1, 1, 1, 1, 1, 1, 1]
for i in range(len(g)):
print(g[i])
print("Positive epistasis: " + str(epistasis_positive(g[i], positives, negatives, repetitions)))
print("Negative epistasis: " + str(epistasis_negative(g[i], positives, negatives, repetitions)))
print("\n")