-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
108 lines (87 loc) · 2.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
"""Train File."""
## Imports
import argparse
# import itertools
import copy
import numpy as np
import torch
import torch.nn as nn
from src.utils.misc import seed, generate_grid_search_configs
from src.utils.configuration import Config
from src.datasets import *
from src.models import *
from src.trainers import *
from src.modules.preprocessors import *
from src.utils.mapper import configmapper
from src.utils.logger import Logger
import os
dirname = os.path.dirname(__file__) ## For Paths Relative to Current File
## Config
parser = argparse.ArgumentParser(prog="train.py", description="Train a model.")
parser.add_argument(
"--model",
type=str,
action="store",
help="The configuration for model",
default=os.path.join(dirname, "./configs/models/forty/default.yaml"),
)
parser.add_argument(
"--train",
type=str,
action="store",
help="The configuration for model training/evaluation",
default=os.path.join(dirname, "./configs/trainers/forty/train.yaml"),
)
parser.add_argument(
"--data",
type=str,
action="store",
help="The configuration for data",
default=os.path.join(dirname, "./configs/datasets/forty/default.yaml"),
)
parser.add_argument(
"--grid_search",
action="store_true",
help="Whether to do a grid_search",
default=False,
)
### Update Tips : Can provide more options to the user.
### Can also provide multiple verbosity levels.
args = parser.parse_args()
# print(vars(args))
model_config = Config(path=args.model)
train_config = Config(path=args.train)
data_config = Config(path=args.data)
grid_search = args.grid_search
# verbose = args.verbose
# Preprocessor, Dataset, Model
preprocessor = configmapper.get_object(
"preprocessors", data_config.main.preprocessor.name
)(data_config)
if grid_search:
train_configs = generate_grid_search_configs(train_config, train_config.grid_search)
print(f"Total Configurations Generated: {len(train_configs)}")
logger = Logger(
**train_config.grid_search.hyperparams.train.log.logger_params.as_dict()
)
for train_config in train_configs:
print(train_config)
## Seed
seed(train_config.main_config.seed)
model, train_data, val_data = preprocessor.preprocess(model_config, data_config)
# Trainer
trainer = configmapper.get_object("trainers", train_config.trainer_name)(
train_config
)
## Train
trainer.train(model, train_data, val_data, logger)
else:
## Seed
seed(train_config.main_config.seed)
model, train_data, val_data = preprocessor.preprocess(model_config, data_config)
## Trainer
trainer = configmapper.get_object("trainers", train_config.trainer_name)(
train_config
)
## Train
trainer.train(model, train_data, val_data)