-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.h
380 lines (315 loc) · 11.7 KB
/
model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief definitions of the 'model' and 'matrix_factorization' classes
* \author Ghislain Durif
* \version 1.0
* \date 07/02/2018
*/
#ifndef MODEL_H
#define MODEL_H
#include <RcppEigen.h>
#include <vector>
#include "utils/random.h"
using std::vector;
// [[Rcpp::depends(RcppEigen)]]
using Eigen::MatrixXd; // variable size matrix, double precision
using Eigen::Map; // 'maps' rather than copies
using Eigen::VectorXi; // variable size vector, integer
/*!
* \namespace pCMF
*
* A specific namespace for all classes and functions related to the pCMF package
*/
namespace pCMF {
/*!
* \brief class definition for a generic statistical model in the variational framework
*/
class model {
public:
/*!
* \brief Initialize variational and hyper-parameters with random values
*
* \param[in,out] rng Boost random number generator
*/
virtual void init_model_param(myRandom::RNGType &rng);
/*!
* \brief update rules for parameters in the optimization process
*/
virtual void update_param();
/*!
* \brief update parameters values between iterations
*
* current values of parameters become old values of parameters
*/
virtual void prepare_next_iterate();
/*!
* \brief compute absolute and normalized gap of parameters between two iterates
*
* \param[out] abs_gap absolute gap.
* \param[out] norm_gap normalized gap.
*/
virtual void gap_between_iterates(double &abs_gap, double& norm_gap);
/*!
* \brief compute a custom (model dependent) convergence criterion to assess convergence
*
* Important: This custom criterion should be transformed if necessary
* so that it converges to zero when convergence occurs.
*
* Note: by default, this method raises an error if the user asks that
* convergence is assessed based on this custom criterion when using
* a method/model for which there is no custom criterion defined.
*
* \return value of the criterion
*/
virtual double custom_conv_criterion();
/*!
* \brief compute the joint (or complete) log-likelihood of the model
*/
virtual double loglikelihood() = 0;
/*!
* \brief compute the deviance associated to the model
*/
virtual double deviance() = 0;
/*!
* \brief compute the percentage of explained deviance associated to the model
*/
virtual double exp_deviance() = 0;
/*!
* \brief compute the evidence lower bound (ELBO) for the model (if defined)
*
* The default behavior is to return 0 for cases when ELBO is not defined.
*/
virtual double elbo();
/*!
* \brief create list of object to return
*
* \param[out] results list of returned objects
*/
virtual void get_output(Rcpp::List &results) = 0;
};
/*!
* \brief definition of shared attributes and member functions for a matrix factorization procedure
*
* Data:
* * X: count data matrix of dimension n x p
* * n: number of observations in the sample
* * p: number of recorded variables
*
* Matrix factorization:
* * K: dimension of the latent subspace
* * U: representation of the individuals in the latent subspace, called components, dimension n x K
* * V: contribution of the variables to the representation in the latent subspace, called loadings, dimension p x K
*
*/
class matrix_factorization {
protected:
MatrixXd m_X; /*!< count data matrix, dim n x p */
int m_n; /*!< number of observations (rows) */
int m_p; /*!< number of recorded variables (columns) */
int m_K; /*!< dimension of the latent subspace */
MatrixXd m_U; /*!< latent components, dim n x K (representation of individuals) */
MatrixXd m_V; /*!< latent loadings, dim p x K (contribution of recorded variables) */
MatrixXd m_UVt; /*!< store the product \f$ U V^t \f$, dim n x p (reconstruction of X) */
public:
/*!
* \brief Constructor for the class `matrix_factorization`
*
* \param[in] n number of observation in the data matrix (rows)
* \param[in] p number of recorded variables in the data matrix (columns)
* \param[in] K dimension of the latent subspace to consider
* \param[in] X count data matrix of dimension n x p
*
*/
matrix_factorization(int n, int p, int K, const MatrixXd &X);
/*!
* \brief Destructor for the class `matrix_factorization`
*/
~matrix_factorization();
/*!
* \brief compute the value of the loss associated to the model
*/
virtual double optim_criterion() = 0;
// define getters
/*!
* \brief getter for U and V
*
* \param[out] U stores the current value of attribute U
* \param[out] V stores the current value of attribute V
*/
virtual void get_factor(MatrixXd &U, MatrixXd &V);
};
/*!
* \brief class definition for a generic matrix factorization model
*/
class matrix_factor_model : public matrix_factorization, public model {
protected:
VectorXi m_factor_order; /*!< order of the factor according to the deviance criterion */
public:
/*!
* \brief constructor for the class `matrix_factor_model`
*/
matrix_factor_model(int n, int p, int K, const MatrixXd &X);
/*!
* \brief Initialize variational and hyper-parameters with random values
*
* \param[in,out] rng Boost random number generator
*/
virtual void random_init_model_param(myRandom::RNGType &rng);
/*!
* \brief Initialize model parameter with given values
*
* \param[in] U matrix n x K, initial values for U
* \param[in] V matrix p x K, initial values for V
*/
virtual void init_model_param(const MatrixXd &U, const MatrixXd &V);
/*!
* \brief randomly perturb parameters
*
* \param[in,out] rng random number generator
* \param[in] noise_level level of the perturbation, based on a uniform
* distribution on [-noise_level, noise_level]
*/
virtual void perturb_param(myRandom::RNGType &rng, double noise_level) = 0;
/*!
* \brief update rules for parameters in the optimization process
*/
virtual void update_param();
/*!
* \brief update parameters values between iterations
*
* current values of parameters become old values of parameters
*/
virtual void prepare_next_iterate();
/*!
* \brief order factor according to the deviance criterion
*
* Compute best factor order and update the 'm_factor_order' attribute
*
* Note: this method does not modify the factor order, it is necessary to
* call the 'reorder_factor' method to effectively reorder factors
* according to the 'm_factor_order' attribute
*/
virtual void order_factor();
/*!
* \brief reorder factor according to the 'm_factor_order' attribute
*
* Default behavior is to only reorder U and V
*/
virtual void reorder_factor();
/*!
* \brief create list of object to return
*
* \param[out] results list of returned objects
*/
void get_output(Rcpp::List &results);
protected:
/*!
* \brief compute partial deviance using a sub-set of factors (among 1...K)
*
* \param[in] factor integer vector of size 'K' giving the sub-set of
* 'k' factors to consider to compute the deviance in first 'k' positions.
* \param[in] k integer, sub-dimension to consider (<='K').
*/
virtual double partial_deviance(const vector<int> &factor, int k);
};
/*!
* \brief class definition for a generic matrix factorization model in the variational framework
*/
class variational_matrix_factor_model : public matrix_factor_model {
protected:
// sufficient statistics regarding the variational distribution q
MatrixXd m_EU; /*!< Expectation of U regarding the variational distribution q, dimension n x K */
MatrixXd m_ElogU; /*!< Expectation of log U regarding the variational distribution q, dimension n x K */
MatrixXd m_EV; /*!< Expectation of V regarding the variational distribution q, dimension p x K */
MatrixXd m_ElogV; /*!< Expectation of log V regarding the variational distribution q, dimension p x K */
public:
/*!
* \brief constructor for the class `variational_matrix_factor_model`
*/
variational_matrix_factor_model(int n, int p, int K, const MatrixXd &X);
/*!
* \brief initialize variational and hyper parameters in sparse model
*
* \param[in] sel_bound real value in [0,1] used to threshold sparsity
* probabilities for factor V
* \param[in,out] rng Boost random number generator
*/
virtual void init_sparse_param(double sel_bound, myRandom::RNGType &rng);
/*!
* \brief initialize variational and hyper parameters in sparse model
* with given values
*
* \param[in] sel_bound real value in [0,1] used to threshold sparsity
* probabilities for factor V
* \param[in] prob_S matrix of dimension p x K to intialize attribute
* m_prob_S (variational probabilities over S).
* \param[in] prior_S vector of length p to intialize attribute
* m_prior_prob_S (prior probabilities over S).
*/
virtual void init_sparse_param(double sel_bound,
const MatrixXd &prob_S,
const VectorXd &prior_S);
/*!
* \brief initialize variational and hyper-parameter in zero-inflated model
*/
virtual void init_zi_param();
/*!
* \brief initialize variational and hyper-parameter in zero-inflated model
*
* \param[in] prob_D matrix of dimension n x p to intialize attribute
* m_prob_D (variational probabilities over D).
* \param[in] prior_D vector of length p to intialize attribute
* m_prior_prob_D (prior probabilities over D).
*/
virtual void init_zi_param(const MatrixXd &prob_D,
const VectorXd &prior_D);
/*!
* \brief update rules for parameters in the optimization process
*/
virtual void update_param();
/*!
* \brief update parameters values between iterations
*
* current values of parameters become old values of parameters
*/
virtual void prepare_next_iterate();
protected:
/*!
* \brief update rule for variational parameters in the optimization process
*/
virtual void update_variational_param();
/*!
* \brief update rules for prior hyper-parameters in the optimization process
*/
virtual void update_hyper_param();
/*!
* \brief update variational parameters values between iterations
*
* current values of varitional parameters become old values of parameters
*/
virtual void prepare_next_iterate_variational_param();
/*!
* \brief update prior hyper-parameters values between iterations
*
* current values of prior hyper-parameters become old values of parameters
*/
virtual void prepare_next_iterate_hyper_param();
};
}
#endif // MODEL_H