-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinternal.h
159 lines (142 loc) · 3.51 KB
/
internal.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
// Copyright 2018 Ghislain Durif
//
// This file is part of the `pCMF' library for R and related languages.
// It is made available under the terms of the GNU General Public
// License, version 2, or at your option, any later version,
// incorporated herein by reference.
//
// This program is distributed in the hope that it will be
// useful, but WITHOUT ANY WARRANTY; without even the implied
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the GNU General Public License for more
// details.
//
// You should have received a copy of the GNU General Public
// License along with this program; if not, write to the Free
// Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
// MA 02111-1307, USA
/*!
* \brief definitions of internal functions
* \author Ghislain Durif
* \version 1.0
* \date 07/02/2018
*/
#ifndef INTERNAL_H
#define INTERNAL_H
#include <boost/math/special_functions/digamma.hpp>
#include <boost/math/special_functions/trigamma.hpp>
#include <math.h>
#include <RcppEigen.h>
// [[Rcpp::depends(BH)]]
using boost::math::digamma;
using boost::math::trigamma;
// [[Rcpp::depends(RcppEigen)]]
using Eigen::VectorXd; // variable size vector, double precision
/*!
* \namespace internal
*
* A specific namespace for internal functions
*/
namespace internal {
/*!
* \fn inverse digamma (psi) function
*
* find the solution regarding x with y given of y = digamma(x)
*
* \param[in] y the value of the digamma function
* @return the corresponding x
*/
inline double digammaInv(double y, int nbIter) {
double x0 = 0;
double x = 0;
// init
if(y >= -2.22) {
x0 = std::exp(y) + 0.5;
} else {
x0 = -1/(y-digamma(1));
}
// iter
for(int i=0; i<nbIter; i++) {
x = x0 - (digamma(x0) - y)/trigamma(x0);
x0 = x;
}
return x;
};
/*!
* \fn compute the empirical variance of a serie of observations
*
* \param[in] sample vector of observations
*
* \return value of the (unbiased) variance estimator on the sample of observations
*/
inline double variance(const VectorXd &sample) {
int n = sample.size();
double var;
VectorXd centered(n);
centered = sample.array() - sample.mean();
var = centered.squaredNorm() / double(n - 1);
return(var);
};
/*!
* \fn custom logarithm
*
* return 0 if applied to 0
*
* It is designed to be used in Poisson log-likelihood where we can have
* 0*log(0) (which should be 0)
*
* \param[in] x real positive value
*
* \return log(x) if x>0 else 0
*/
inline double custom_log(double x) {
if(x > 0) {
return(std::log(x));
} else {
return(0);
}
};
/*!
* \fn custom exponential
*
* avoid under-flowing
*
* \param[in] x real positive value
*
* \return exp(x) if x>-100 else 3e-44
*/
inline double custom_exp(double x) {
if(x > -100) {
return(std::exp(x));
} else {
return(3e-44);
}
};
/*!
* \fn custom logit function to avoid under and over-flow
*
* log(x/(1-x))
*
* @param[in] x real between 0 and 1
* @return the value of logit(x)
*/
inline double logit(double x) {
if (x >= 1 - 1e-12) return 30;
if (x <= 1e-12) return -30;
return std::log(x/(1-x));
};
/*!
* \fn custom logit inverse function to avoid under and over-flow
*
* exp(x)/(1+exp(x)) = 1/(1+exp(-x))
*
* @param[in] x real between 0 and 1
* @return the value of logit(x)
*/
inline double expit(double x) {
if (x >= 30) return 1;
if (x <= -30) return 0;
return 1.0 / (1 + std::exp(-x));
};
}
#endif // INTERNAL_H