From e6a8d94db485ac48477a3ada322764bcc93655b4 Mon Sep 17 00:00:00 2001 From: Timo Heister Date: Wed, 11 Dec 2024 11:11:30 -0500 Subject: [PATCH] bib: fix fieldstone fixes #6183 --- benchmarks/viscosity_grooves/doc/viscosity_grooves.md | 2 +- doc/sphinx/references.bib | 10 +++++----- 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/benchmarks/viscosity_grooves/doc/viscosity_grooves.md b/benchmarks/viscosity_grooves/doc/viscosity_grooves.md index 06177562bc6..3990ffb0838 100644 --- a/benchmarks/viscosity_grooves/doc/viscosity_grooves.md +++ b/benchmarks/viscosity_grooves/doc/viscosity_grooves.md @@ -22,7 +22,7 @@ where $\epsilon$ controls the viscosity contrast. It is easy to verify that the flow is incompressible as the velocity field satisfies $\nabla\cdot \mathbf u = 0$. The right hand side term of the Stokes equation is obtained by inserting the expressions for velocity, pressure and viscosity -in the momentum conservation equation, see {cite:t}`thieulot:2019` for details. The +in the momentum conservation equation, see {cite:t}`fieldstone` for details. The velocity, pressure and right hand side magnitude are shown in {numref}`fig:benchmark-grooves-3x3` for $L=3$ and $\epsilon=0.1$. diff --git a/doc/sphinx/references.bib b/doc/sphinx/references.bib index c0b69bcce2e..2321377c189 100644 --- a/doc/sphinx/references.bib +++ b/doc/sphinx/references.bib @@ -11855,11 +11855,11 @@ @article{garzanti:etal:2018 doi = {10.1016/j.earscirev.2017.11.012}, } -@Misc{thieulot:2019, - author = {C. Thieulot}, - title = {The Finite Element Method in Geodynamics}, - url = {https://github.com/cedrict/fieldstone/blob/master/manual.pdf}, - year = {2019} +@article{fieldstone, +author = "Cedric Thieulot", +title = "{Fieldstone: a computational geodynamics (self-)teaching tool}", +year = "2023", +doi = "10.5194/egusphere-egu23-14212" } @incollection{john:knobloch:2006,