-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcommittor_projection_NN.py
461 lines (396 loc) · 19.9 KB
/
committor_projection_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
# '''
# Created in February 2022
# @author: Alessandro Lovo
# '''
description = """Intrinsically interpretable neural network architecture. Can be used to perform committor projection."""
dependencies = None
import Learn2_new as ln
logger = ln.logger
ut = ln.ut
np = ln.np
tf = ln.tf
keras = ln.keras
layers = keras.layers
pd = ln.pd
from functools import wraps
# log to stdout
import logging
import sys
from pathlib import Path
if __name__ == '__main__':
logging.getLogger().level = logging.INFO
logging.getLogger().handlers = [logging.StreamHandler(sys.stdout)]
class SeparateMRSOLinearModel(keras.Model):
def __init__(self, m=1):
self.m = m
self.kernel = keras.layers.Dense(m, activation=None)
self.conc = keras.layers.Concatenate()
def __call__(self, x):
x, mrso = x
x = self.kernel(x)
x = self.conc([x,mrso])
return x
class Dense2D(layers.Layer):
def __init__(self, filters_per_field=[1,1,1], merge_to_one=True, regularizer=None, **kwargs):
'''
Layer for performing a linear projection of a color image treating the colors (fields) independently
Parameters
----------
filters_per_field : list[int], optional
Number of patterns onto which to project for every color (field), by default [1,2,1]
merge_to_one : bool, optional
Whether to sum the outputs of the scalar products between filters and fields into a single neuron. This makes the reduced space one dimensional.
With this setting there is no point in having more than 1 filter per field. Default is False
regularizer : tf.keras.regularizers.Regularizer, optional
Regularizer, by default None
'''
super().__init__(**kwargs)
self.filters_per_field = filters_per_field
self.nfields = len(self.filters_per_field)
self.nfilters = np.sum(self.filters_per_field)
self.merge_to_one = merge_to_one
if self.nfilters == 0:
raise ValueError(f'Layer with no filters is invalid: {filters_per_field = }')
if self.merge_to_one:
self.sum = keras.layers.Add()
else:
self.conc = keras.layers.Concatenate()
self.m = 1 if self.merge_to_one else self.nfilters
self.regularizer = regularizer
def build(self, input_shape):
if input_shape[-1] != self.nfields:
raise ValueError(f'Expected {self.nfields} fields, received {input_shape[-1]}')
kernel_shape = input_shape[-3:-1]
self.kernels = []
for i, fpf in enumerate(self.filters_per_field):
if fpf:
self.kernels.append(self.add_weight(
name=f"w_{i}",
shape=(*kernel_shape, fpf),
initializer="random_normal",
trainable=True,
regularizer=self.regularizer
))
else:
self.kernels.append(None) # no filters for this field
def call(self, x):
if x.shape[-1] != self.nfields:
raise ValueError(f'Expected {self.nfields} fields, received {x.shape[-1]}')
x = [tf.tensordot(x[...,i], k, axes=2) for i,k in enumerate(self.kernels) if k is not None]
if self.nfilters == 1:
x = x[0]
elif self.merge_to_one:
x = self.sum(x)
else:
x = self.conc(x)
return x
class GradientRegularizer(keras.regularizers.Regularizer):
def __init__(self, mode='l2', c=1, weights=None, periodic_lon=True, normalize=False, lat=None):
'''
Makes a filter smooth by penalizing the difference between adjacent pixels
Parameters
----------
mode : 'l1' or 'l2, optional
regularization mode, by default 'l2'
c : float, optional
regularization coefficient, by default 1
weights : np.ndarray or str, optional
weights to apply to the different pixels of the filter, special options are:
- None : uniform weighting
- 'sphere' : assumes a spherical topology (needs a latitude vector: `lat`)
- 'auto' or 'compromise' : deprecated: it is a wrong version of the sphere mode
By default None
periodic_lon : bool, optional
whether to consider periodicity on the longitude axis, by default True
normalize : bool, optional
whether to normalize the gradient so it is not sensitive to rescaling of the whole filter, by default True
'''
if mode in ['L1', 'l1', 'sparse']:
self.mode = 'l1'
else:
if mode not in ['L2', 'l2', 'ridge']:
logger.warning(f"Unrecognized regularization {mode = }: using 'l2'")
self.mode = 'l2'
self.c = c
self.weights = weights
self.periodic_lon = periodic_lon
self.normalize = normalize
self.lat = lat
if self.weights is not None:
if isinstance(self.weights, str):
if self.weights == 'sphere':
if self.lat is None:
raise ValueError(f'{self.weights} regularization mode requires latitude vector')
self.coslat = np.cos(self.lat*np.pi/180)
self.broadcasted_coslat = None
elif self.weights in ['auto', 'compromise']: # for backward compatibility
logger.warning(f"Deprecation warning: regularization weight in mode {self.weights} is deprecated. Please use None or 'sphere'")
apply_sqrt = self.weights == 'compromise'
if self.lat is None:
raise ValueError(f'{self.weights} regularization mode requires latitude vector')
self.weights = np.ones((22,128,2), dtype=np.float32)
# gradient in the lat (x) direction is uniform so we don't do anything
# gradient in the lon direction depends on latitude
self.weights[...,1] = (self.weights[...,1].T/np.cos(self.lat*np.pi/180)).T # these double transposition helps using numpy native operators
if apply_sqrt:
self.weights = np.sqrt(self.weights)
else:
raise ValueError(f'Unrecognized string option for weights: {self.weights}')
if not isinstance(self.weights, str): # the weights are numerical, so we normalize them
if self.mode == 'l1':
self.weights = self.weights/tf.math.reduce_mean(tf.math.abs(self.weights)) # now the mean of the weights is 1
else:
self.weights = self.weights/tf.math.sqrt(tf.math.reduce_mean(tf.math.square(self.weights)))
def __call__(self, x):
if self.c == 0:
return 0
nfilters = x.shape[-1]
if self.weights is not None:
if isinstance(self.weights, str):
if self.broadcasted_coslat is None:
self.broadcasted_coslat = (np.ones(x.shape[:2]).T*self.coslat).T # these double transposition helps using numpy native operators
elif self.weights.shape[:-1] != x.shape[:-1]:
raise ValueError(f'weight shape {self.weights.shape} does not match received input shape {x.shape[:-1]}')
if self.mode == 'l1':
op = tf.math.abs
else:
op = tf.math.square
s = 0
for i in range(nfilters):
if self.weights is not None:
if isinstance(self.weights, str):
if self.weights == 'sphere':
# add gradient along x (lat)
_s = tf.math.reduce_sum(self.broadcasted_coslat[:-1,:]*op(x[1:,:,i] - x[:-1,:,i]))
# add gradient along y (lon)
_s = _s + tf.math.reduce_sum(self.broadcasted_coslat[:,:-1]*op((x[:,1:,i] - x[:,:-1,i])/self.broadcasted_coslat[:,:-1]))
# add periodic point
if self.periodic_lon:
_s = _s + tf.math.reduce_sum(self.broadcasted_coslat[:,-1]*op((x[:,0,i] - x[:,-1,i])/self.broadcasted_coslat[:,-1]))
else:
raise ValueError(f'Unrecognized string option for weights: {self.weights}')
else:
# add gradient along x (lat)
_s = tf.math.reduce_sum(op((x[1:,:,i] - x[:-1,:,i])*self.weights[:-1,:,0]))
# add gradient along y (lon)
_s = _s + tf.math.reduce_sum(op((x[:,1:,i] - x[:,:-1,i])*self.weights[:,:-1,1]))
# add periodic point
if self.periodic_lon:
_s = _s + tf.math.reduce_sum(op((x[:,0,i] - x[:,-1,i])*self.weights[:,-1,1]))
else:
# add gradient along x (lat)
_s = tf.math.reduce_sum(op(x[1:,:,i] - x[:-1,:,i]))
# add gradient along y (lon)
_s = _s + tf.math.reduce_sum(op(x[:,1:,i] - x[:,:-1,i]))
# add periodic point
if self.periodic_lon:
_s = _s + tf.math.reduce_sum(op(x[:,0,i] - x[:,-1,i]))
if self.normalize:
if isinstance(self.weights, str):
if self.weights == 'sphere':
_s = _s/tf.math.reduce_sum(self.broadcasted_coslat * op(x[...,i]))
else:
raise ValueError(f'Unrecognized string option for weights: {self.weights}')
else:
_s = _s/tf.math.reduce_sum(op(x[...,i]))
s = s + _s
return self.c*s
def get_config(self):
return {'c': self.c, 'weights': self.weights, 'periodic_lon': self.periodic_lon, 'normalize': self.normalize}
orig_prepare_XY = ln.prepare_XY
@wraps(orig_prepare_XY)
def prepare_XY(fields, **kwargs):
res = orig_prepare_XY(fields, **kwargs)
# res = X, Y, year_permutation, lat, lon, [threshold]
logger.info('Saving latitude as module level variable')
ln.lat = res[3]
logger.info(f'{ln.lat = }')
return res
orig_create_model = ln.create_model
def create_model(input_shape, filters_per_field=[1,1,1], merge_to_one=False, batch_normalization=False, regularization='gradient', reg_mode='l2', reg_c=1, reg_weights=None, reg_periodicity=True, reg_norm=False, dense_units=[8,2], dense_activations=['relu', None], dense_dropouts=False, dense_l2coef=None):
'''
Creates a neural network
Parameters
----------
input_shape : tuple
shape of the data (without the batch axis)
filters_per_field : list[int], optional
Number of projection patterns for each of the fields ('ghost' fields should not be counted), by default [1,1,1]
merge_to_one : bool, optional
Whether to sum the outputs of the scalar products between filters and fields into a single neuron. This makes the reduced space one dimensional.
With this setting there is no point in having more than 1 filter per field. Default is False
batch_normalization : bool, optional
whether to perform batch normalization after the projection. This helps if the input data is not normalized, by default False
regularization : str, optional
whether to regularize the projection by penalizing the spatial gradient ('gradient') or rather simply apply a `reg_mode` penalty to the weights, by default 'gradient'
reg_mode : str, optional
how to regularize the graident, either 'l1' or 'l2', by default 'l2'
reg_c : float, optional
coefficient for the gradient regularization penalty that is added to the loss, by default 1
reg_weights : str, optional
How to compute the gradient: either None (assuming euclidean distance between the gridpoints) or 'sphere' which accounts for the fact that the Earth is spherical, by default None
reg_periodicity : bool, optional
Whether to regularize the gradient over the Bering straight, by default True
reg_norm : bool, optional
Whether to normalize the gradient to the norm of the projection pattern. This avoids the tendency to simply push all the values in the pattern to zero, by default True
dense_units : list[int], optional
Number of neurons for each hidden layer of the classification network. The last layer must have 2 neurons, by default [8,2]
dense_activations : str or list[str], optional
Activation functions at the end of each layer. If not a string, must have the same length as `dense_units` and the last layer must have None activation. By default ['relu', None]
If string, it will broadcasted to all layers except the last which will have activation=None
dense_dropouts : list[float], optional
Dropout rates for each layer. If False or None it is disabled, by default False
Returns
-------
tf.keras.Model
Neural network
'''
regularizer = None
if reg_c:
if regularization == 'gradient':
regularizer = GradientRegularizer(mode=reg_mode, c=reg_c, weights=reg_weights, periodic_lon=reg_periodicity, normalize=reg_norm, lat=ln.lat)
else:
if reg_mode == 'l2':
regularizer = keras.regularizers.l2(reg_c)
elif reg_mode == 'l1':
regularizer = keras.regularizers.l1(reg_c)
else:
raise ValueError(f'Unrecognized value for reg_mode: {reg_mode}')
model = keras.models.Sequential()
model.add(Dense2D(filters_per_field=filters_per_field, merge_to_one=merge_to_one, regularizer=regularizer, input_shape=input_shape))
if batch_normalization:
model.add(keras.layers.BatchNormalization())
# dense layers
# adjust the shape of the arguments to be of the same length as `dense_units`
args = [dense_activations, dense_dropouts, dense_l2coef]
for j,arg in enumerate(args):
if not isinstance(arg, list):
args[j] = [arg]*len(dense_units)
if j==0:
args[j][-1] = None # the last layer cannot have activation
elif j==1:
args[j][-1] = False # the last layer cannot have dropout
elif len(arg) != len(dense_units):
raise ValueError(f'Invalid length for argument {arg}')
logger.info(f'dense args = {args}')
dense_activations, dense_dropouts, dense_l2coef = args
# build the dense layers
for i in range(len(dense_units)):
model.add(layers.Dense(dense_units[i], activation=dense_activations[i], kernel_regularizer=keras.regularizers.l2(dense_l2coef[i]) if dense_l2coef[i] else None))
if dense_dropouts[i]:
model.add(layers.Dropout(dense_dropouts[i]))
return model
def split_model(model, maxiter=5):
proj = model.layers[0]
rest = model.layers[1:]
for i in range(maxiter):
if hasattr(proj, 'filters_per_field'):
break
rest = proj.layers[1:] + rest
proj = proj.layers[0]
return proj, keras.models.Sequential(rest)
orig_train_model = ln.train_model
def train_model(model, X_tr, Y_tr, X_va, Y_va, folder, num_epochs, optimizer, loss, metrics, load_kernels_from=None, learn_kernels=True, orig_train_model_kwargs=None):
'''
Wrapper of the original train_model function. The extra arguments are:
load_kernels_from : None|str|list
How to initialize the kernels
learn_kernels : bool
Whether to train the kernels or leave them as they are at the initialization. By default True
'''
if orig_train_model_kwargs is None:
orig_train_model_kwargs = {}
if load_kernels_from is not None:
if isinstance(load_kernels_from, str):
if load_kernels_from.startswith('composite'):
comp = np.mean(X_tr[Y_tr > 0.5], axis=0)
np.save(f'{folder}/composite.npy', comp)
elif load_kernels_from.startswith('significance'):
comp = np.mean(X_tr[Y_tr > 0.5], axis=0)
np.save(f'{folder}/composite.npy', comp)
sig = np.std(X_tr[Y_tr > 0.5], axis=0)
sig[sig==0] = 1
comp = comp/sig
np.save(f'{folder}/significance.npy', comp)
else:
raise NotImplementedError(f'Unknown option {load_kernels_from}')
# split the model
proj, _ = split_model(model)
FPF = proj.filters_per_field
load_kernels_from = []
for i,fpf in enumerate(FPF):
if fpf is None:
continue
elif fpf == 1:
load_kernels_from.append(comp[...,i:i+1])
else:
raise ValueError(f'It is dumb to set the composite as kernel {fpf} times')
if not isinstance(load_kernels_from, list):
raise TypeError(f'at this point load_kernels_from should be of type list, not {type(load_kernels_from)}')
proj.set_weights(load_kernels_from)
if not learn_kernels: # we can compute the result of the first layer on the data at once at the beginning. Also since we won't compute gradients through the projection layer, it is not trained.
logger.info('Projection is not trainable: computing it at the beginning')
# split the model
proj, rest = split_model(model)
proj = keras.models.Sequential([proj])
proj.save(f'{folder}/projection') # save the projection
model = rest # override model
model.build(input_shape=proj.output_shape)
# compute the output of the first layer
batch_size = orig_train_model_kwargs.get('batch_size', 1024)
_X_va = []
for b in range(Y_va.shape[0]//batch_size + 1):
_X_va.append(proj(X_va[b*batch_size:(b+1)*batch_size]).numpy())
X_va = np.concatenate(_X_va) # override validation set
_X_tr = []
for b in range(Y_tr.shape[0]//batch_size + 1):
_X_tr.append(proj(X_tr[b*batch_size:(b+1)*batch_size]).numpy())
X_tr = np.concatenate(_X_tr) # override training set
logger.info('New data shapes:')
logger.info(f'{X_tr.shape = }, {X_va.shape = }, {Y_tr.shape = }, {Y_va.shape = }')
return orig_train_model(model, X_tr, Y_tr, X_va, Y_va, folder, num_epochs, optimizer, loss, metrics, **orig_train_model_kwargs)
orig_load_model = ln.load_model
def load_model(checkpoint, compile=False):
'''
Loads a neural network and its weights. Checkpoints with the weights are supposed to be in the same folder as where the model structure is
Parameters
----------
checkpoint : str
path to the checkpoint is. For example with structure <folder>/cp-<epoch>.ckpt
compile : bool, optional
whether to compile the model, by default False
Returns
-------
keras.models.Model
'''
model_folder = Path(checkpoint).parent
model = keras.models.load_model(model_folder, compile=compile)
model.load_weights(checkpoint)
proj_folder = model_folder / 'projection'
if proj_folder.exists():
logger.info('Detected separate projection: loading and concatenating')
proj = keras.models.load_model(proj_folder, compile=compile)
model = keras.models.Sequential([proj, model])
return model
#######################################################
# set the modified functions to override the old ones #
#######################################################
def enable():
ln.add_mod(__file__, description, dependencies)
ln.orig_train_model = orig_train_model
ln.train_model = train_model
ln.create_model = create_model
ln.load_model = load_model
ln.prepare_XY = prepare_XY
ln.CONFIG_DICT = ln.build_config_dict([ln.Trainer.run, ln.Trainer.telegram]) # module level config dictionary
def disable():
ln.remove_mod(__file__)
del ln.orig_train_model
ln.train_model = orig_train_model
ln.create_model = orig_create_model
ln.load_model = orig_load_model
ln.prepare_XY = orig_prepare_XY
ln.CONFIG_DICT = ln.build_config_dict([ln.Trainer.run, ln.Trainer.telegram])
if __name__ == '__main__':
enable()
ln.main()