-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_chem_funs.py
814 lines (672 loc) · 30.6 KB
/
make_chem_funs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
#!/usr/bin/python
import sys, os
import numpy as np
import vulcan_cfg
# for constructing the symbolic Jacobian matrix
from sympy import sin, cos, Matrix
from sympy import Symbol
from sympy import lambdify
ofname = 'chem_funs.py'
gibbs_text = vulcan_cfg.gibbs_text
# read the network and produce the .txt table for chemdf
# Re-arrange the numerbers in the network
def read_network():
Rf, Rindx = {}, {}
i = 1
special_re, photo_re = False, False
conden_re = False
re_end = False
if vulcan_cfg.use_photo==True: ofstr = '# Chemical Network and Photolysis Reactions \n\n'
else: ofstr = '# Chemical Network without Photochemistry \n\n'
photo_str = '# photochemistry \n\n'
ion_str = '# ionchemistry \n\n'
re_label = '#R'
new_network = ''
photo_re_indx = 0 # The index of first photodissoication reaction
with open(vulcan_cfg.network, 'r') as f:
for line in f.readlines():
# switch to 3-body and dissociation reations
if line.startswith("# 3-body"): re_label = '#M'
elif line.startswith("# special"):
special_re = True # switch to reactions with special forms (hard coded)
re_label = '#S'
elif line.startswith("# condensation"):
print ('Including condensation reactions.')
special_re = False # switch to reactions with special forms (hard coded)
#conden_re = True
re_label = '#C'
elif line.startswith("# radiative"): re_label = '#R'
elif line.startswith("# photo"):
special_re = False # switch to photo-disscoiation reactions
#conden_re = False
photo_re = True
photo_re_indx = i
re_label = '#P'
elif line.startswith("# ionisation"): re_label = '#I'
# skip common lines and blank lines
# ========================================================================================
if not line.startswith("#") and line.strip() and special_re == False and re_end == False: # if not starts
Rf[i] = line.partition('[')[-1].rpartition(']')[0].strip()
li = line.partition(']')[-1].strip()
columns = li.split()
# updating the numerical index in the network (1, 3, ...)
line = '{:<4d} {:s}'.format(i, "".join(line.partition('[')[1:]))
if not (vulcan_cfg.use_photo == False and photo_re == True):
ofstr += re_label + str(i) + '\n'
ofstr += Rf[i] + '\n'
# storing only the photochemical reactions
elif re_label == '#P':
photo_str += re_label + str(i) + '\n'
photo_str += Rf[i] + '\n'
# storing only the condensation reactions
elif re_label == '#C':
ofstr += re_label + str(i) + '\n'
ofstr += Rf[i] + '\n'
elif re_label == '#R':
photo_str += re_label + str(i) + '\n'
photo_str += Rf[i] + '\n'
elif re_label == '#I':
photo_str += re_label + str(i) + '\n'
photo_str += Rf[i] + '\n'
i += 2
# ========================================================================================
elif special_re == True and line.strip() and not line.startswith("#") and re_end == False:
#Rindx[i] = int(line.partition('[')[0].strip())
Rf[i] = line.partition('[')[-1].rpartition(']')[0].strip()
line = '{:<4d} {:s}'.format(i, "".join(line.partition('[')[1:]))
ofstr += re_label + str(i) + '\n'
ofstr += Rf[i] + '\n'
i += 2
new_network += line
with open(vulcan_cfg.network, 'w+') as f: f.write(new_network)
return ofstr, photo_str, photo_re_indx
def make_chemdf(re_table, ofname):
'''
make the function chemdf for calculating the chemical production/loss term
'''
chem_dict = {}
reac_dict = {} # reaction dict. packed with v_i
exp_reac_dict = {} # explicit reaction dict.
i = -1
j = -1 #index of forward reaction(odd number:1,3,5,...)
count = 0 # count for even/odd term in v_exp
reac_list = []
rate_dict = {}
sp_rate = {} # to store each term of prod and loss individually
re_sp_dic = {}
re_reac_prod = {} # store the products and the reactants for reaction j (without M)
re_reac_prod_wM = {} # same as re_reac_prod but including M
re_dict_str = 're_dict = {'
re_wM_dict_str = 're_wM_dict = {' # including M
for line in re_table.splitlines():
'''
reac : e.g. [[1, 'H'], [1, 'H'], [1, 'M']]
reac_args: e.g. ['H2', 'H', 'M']
'''
#skip the space and #
if line == '':
continue
elif line[0] == '#':
continue
else:
reac = []
mol_reac = []
mol_prod = []
prod = []
rate_exp = ''
rate_str = ""
v_str = ""
v_exp = '' # to store the explicit expression of v_i (for jacobian)
# sp_rate = [] # to store species
# R = True:reactants R = False:products
R = True # if reads '->'
N = False
#Need to take car of M!!!
for term in line.split():
if term == '+':
continue
elif term == "->":
# R=True:reactants R=False:products
R = False
continue
# mol_list = [stoi-number, species name]
mol_list = term.split("*")
if len(mol_list) == 1:
mol_list = [1] + mol_list
else:
mol_list = [int(mol_list[0])] + mol_list[1:]
mol = mol_list[1]
stoi = int(mol_list[0])
# check if the species is already included
if not mol in chem_dict and not term=='M':
i += 1
chem_dict.update({mol : i})
reac_dict.update({chem_dict[mol] : ""})
exp_reac_dict.update({chem_dict[mol] : ""})
# creating a new list for new species
sp_rate[mol] = []
# if R is true, it's the reactants
if R:
reac.append(mol_list)
mol_reac.append(mol)
else:
prod.append(mol_list)
mol_prod.append(mol)
j += 2
reac_args = list(set(mol_reac + mol_prod)) #Remove repeating elements
# because set exclude duplicates
# v_i() is the rate equation function for i
rate_str = "v_" + str(j) + "(k, M, "
reac_noM = [ele for ele in reac if not ele[1]=='M' ]
prod_noM = [ele for ele in prod if not ele[1]=='M' ]
reac_args_noM = [ele for ele in reac_args if not ele=='M' ]
# store the products and the reactants in the 1st and 2nd element for reaction j (without M)
re_reac_prod[j] = [ [ele[1] for ele in reac if not ele[1]=='M' ], [ele[1] for ele in prod if not ele[1]=='M' ] ]
# store the products and the reactants in the 1st and 2nd element for reaction j (with M)
re_reac_prod_wM[j] = [ [ele[1] for ele in reac], [ele[1] for ele in prod] ]
# skip line
if j%51 == 0:
re_dict_str += '\n'
re_wM_dict_str += '\n'
re_dict_str += str(j) + ':' + str(re_reac_prod[j]) + ', '
# reverse the list "re_reac_prod[j]" for the reverse reaction
re_dict_str += str(j+1) + ':' + str(re_reac_prod[j][::-1]) + ', '
# with M
re_wM_dict_str += str(j) + ':' + str(re_reac_prod_wM[j]) + ', '
# reverse
re_wM_dict_str += str(j+1) + ':' + str(re_reac_prod_wM[j][::-1]) + ', '
for term in [ele for ele in reac_args if not ele=='M' ] :
rate_str += "y[" + str(chem_dict[term]) + "], "
rate_str = rate_str[0:-2] + ")"
v_exp += 'k[' + str(j) + ']*'
for term in reac:
if term[0]!=1:
if term[1]== 'M':
v_exp += term[1] + "**" + str(term[0]) + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']' + "**" + str(term[0]) + '*'
else:
if term[1]== 'M':
v_exp += term[1] + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']*'
v_exp = v_exp[0:-1] # Delete the last '*'
fv_exp = v_exp
v_exp += ' - k[' + str(j+1) + ']*'
b_exp = ' k[' + str(j+1) + ']*'
for term in prod:
if term[0]!=1:
if term[1]== 'M':
v_exp += term[1] + "**" + str(term[0]) + '*'
b_exp += term[1] + "**" + str(term[0]) + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']' + "**" + str(term[0]) + '*'
b_exp += 'y[' + str(chem_dict[term[1]]) + ']' + "**" + str(term[0]) + '*'
else:
if term[1]== 'M':
v_exp += term[1] + '*'
b_exp += term[1] + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']*'
b_exp += 'y[' + str(chem_dict[term[1]]) + ']*'
v_exp = v_exp[0:-1] # Delete the last '*'
rv_exp = b_exp[0:-1]
for term in reac_noM:
# term[0] os the stoi-number of the species
reac_dict[chem_dict[term[1]]] += " -" + str(term[0]) + "*" + rate_str
# for each term of prod and loss individually
sp_rate[term[1]].append( " -" + str(term[0]) + "*" + fv_exp )
sp_rate[term[1]].append( " +" + str(term[0]) + "*" + rv_exp )
if term[0]==1:
exp_reac_dict[chem_dict[term[1]]] += " -" + "(" + v_exp + ')'
count += 1
else:
exp_reac_dict[chem_dict[term[1]]] += " -" + str(term[0]) + "*(" + v_exp + ')'
count += 1
for term in prod_noM:
reac_dict[chem_dict[term[1]]] += " +" + str(term[0]) + "*" + rate_str
sp_rate[term[1]].append( " +" + str(term[0]) + "*" + fv_exp )
sp_rate[term[1]].append( " -" + str(term[0]) + "*" + rv_exp )
if term[0]==1:
exp_reac_dict[chem_dict[term[1]]] += " +" + "(" + v_exp + ')'
count += 1
else:
exp_reac_dict[chem_dict[term[1]]] += " +" + str(term[0]) + "*(" + v_exp + ')'
count += 1
v_str = "#" + line + "\n"
v_str += "v_" + str(j) + " = lambda k, M, "
for term in reac_args_noM:
v_str += term + ", "
v_str = v_str[0:-2] + " : "
v_str += 'k[' + str(j) + ']*'
for term in reac:
if term[0]!=1:
v_str += term[1] + "**" + str(term[0]) + '*'
else:
v_str += term[1] + '*'
v_str = v_str[0:-1] # Delete the last '*'
v_str += ' - k[' + str(j+1) + ']*'
for term in prod:
if term[0]!=1:
v_str += term[1] + "**" + str(term[0]) + '*'
else:
v_str += term[1] + '*'
v_str = v_str[0:-1]
reac_list.append(v_str)
#ouput of each single rate from k1...
rate_exp += 'k[' + str(j) + ']*'
for term in reac:
if term[1] == 'M':
rate_exp += 'M*'
else:
if term[0]==1:
rate_exp += ('y['+str(chem_dict[term[1]])+']*' )
else:
rate_exp += ('y['+str(chem_dict[term[1]])+']**'+str(term[0])+'*' )
rate_exp = rate_exp[0:-1] # Delete the last '*'
rate_dict[j] = rate_exp
rate_exp = ''
rate_exp += 'k[' + str(j+1) + ']*' #j+1 even number for reverse index
for term in prod:
if term[1] == 'M':
rate_exp += 'M*'
else:
if term[0]==1:
rate_exp += ('y['+str(chem_dict[term[1]])+']*' )
else:
rate_exp += ('y['+str(chem_dict[term[1]])+']**'+str(term[0])+'*' )
rate_exp = rate_exp[0:-1] # Delete the last '*'
rate_dict[j+1] = rate_exp
re_dict_str = re_dict_str[:-2] # delet the last ','
re_dict_str += '}\n'
re_wM_dict_str = re_wM_dict_str[:-2]
re_wM_dict_str += '}\n'
#print re_dict_str
# save output
chem_dict_r = {}
spec_list = []
ofstr = "#!/usr/bin/python\n\nfrom scipy import *\nimport numpy as np\nfrom phy_const import kb, Navo\nimport vulcan_cfg\n\n"
ofstr += "'''\n## Reaction ##\n\n"
ofstr += re_table + "\n\n"
ofstr += "## Mapping ##\n\n"
for term in chem_dict:
chem_dict_r.update({chem_dict[term] : term})
for term in reac_dict:
ofstr += chem_dict_r[term] + ': y[' + str(term) + '], '
ofstr+='\n\n'
for term in reac_dict:
ofstr += chem_dict_r[term] + "\t" + str(term) + "\t" + reac_dict[term] + "\n"
for i in chem_dict_r:
spec_list.append(chem_dict_r[i])
ofstr += "'''\n\n"
ofstr += '#species list\n'
ofstr += 'spec_list = ' + str(spec_list)
ofstr += '\n# the total number of species'
ofstr += '\nni = ' + str(len(chem_dict.keys()))
ofstr += '\n# the total number of reactions (forward and reverse)'
ofstr += '\nnr = ' + str(len(rate_dict.keys()))
ofstr += '\n\n# store the products and the reactants in the 1st and the 2nd element for reaction j (without M)\n' + re_dict_str
ofstr += '\n\n# store the products and the reactants in the 1st and the 2nd element for reaction j (with M)\n' + re_wM_dict_str
ost = '\n\ndef chemdf(y, M, k): \n' # Note: making M as input!!!
ost += '\t y = np.transpose(y) \n'.expandtabs(3)
ost += '\t dydt = np.zeros(shape=y.shape) \n'.expandtabs(3)
for num in reac_dict:
ost += '\t dydt['.expandtabs(3) + str(num) + '] = ' + reac_dict[num] + '\n'
ost += '\t dydt = np.transpose(dydt) \n'.expandtabs(3)
ost += '\t return dydt \n\n'.expandtabs(3)
ost += 'def df(y, M, k):\n'
ost += '\t df_list = [] \n'.expandtabs(3)
for num in exp_reac_dict:
ost += '\t df_list.append( '.expandtabs(3) +exp_reac_dict[num] + ' )\n'
ost += '\t return df_list \n\n'.expandtabs(3)
ofstr += ost
for term in reac_list:
ofstr += term + "\n\n\n"
# for rate analysis
ost = 'def rate_ans(sp): \n'
ost += '\t rate_str = {}\n'.expandtabs(3)
ost += '\t re_sp_dic = {}\n'.expandtabs(3)
for sp in sp_rate:
ost += ' rate_str["' + sp + '"] = ['
re_sp_dic[sp] = []
for i in sp_rate[sp]:
ost += i
ost += ','
start, end = False, False
for n,letter in enumerate(i):
if letter == 'k' and start==False:
k_start=n+2
start = True
elif letter == ']' and start==True and end==False:
k_end = n
end = True
re_sp_dic[sp].append(int(i[k_start:k_end]))
ost = ost[0:-1]
ost += ']'
ost += '\n'
ost += '\t return np.array(rate_str[sp]) \n\n'.expandtabs(3)
ofstr += ost
with open(ofname, "w") as of:
of.write(ofstr)
# return (ni, nr, the list of species)
return (len(chem_dict.keys()), len(rate_dict.keys()), chem_dict.keys())
def make_Gibbs(re_table, gibbs_text, ofname):
'''
Calculating the equilibrium constants (K_eq) from the Gibbs free energy to reverse the reaction rates.
To DO: combine the repetitive parts of make_chemdf and make_Gibbs into one finction
'''
chem_dict = {}
reac_dict = {} # reaction dict. packed with v_i
exp_reac_dict = {} # explicit reaction dict.
i = -1
j = -1 #index of forward reaction(odd number:1,3,5,...)
count = 0 # count for even/odd term in v_exp
reac_list = []
rate_dict = {}
reac_list, rate_dict, gibbs_dict = [], {}, {}
gstr = ''
for line in re_table.splitlines():
if line == '':
continue
elif line[0] == '#':
continue
else:
reac = []
mol_reac = []
mol_prod = []
prod = []
rate_exp = ''
rate_str = ""
v_str = ""
v_exp = '' # to store the explicit expression of v_i (for jacobian)
gibbs = 'np.exp( -('
R = True
N = False
reac_num, prod_num = 0, 0
#Need to take car of M!!!
for term in line.split():
#print 'term' + term
if term == '+':
continue
elif term == "->":
# R=True:reactants R=False:products
R = False
continue
# mol_list = [stoi-number, species name]
mol_list = term.split("*")
if len(mol_list) == 1:
mol_list = [1] + mol_list
else:
mol_list = [int(mol_list[0])] + mol_list[1:]
mol = mol_list[1]
stoi = int(mol_list[0])
# check if the species is already included
if not mol in chem_dict and not term=='M':
i += 1
chem_dict.update({mol : i})
reac_dict.update({chem_dict[mol] : ""})
exp_reac_dict.update({chem_dict[mol] : ""})
# if R is true, it's the reactants
if R:
reac.append(mol_list)
mol_reac.append(mol)
else:
prod.append(mol_list)
mol_prod.append(mol)
j += 2
reac_args = list(set(mol_reac + mol_prod)) #Remove repeating elements
# because set exclude duplicates
# v_i() is the rate equation function for i
rate_str = "v_" + str(j) + "("
reac_noM = [ele for ele in reac if not ele[1]=='M' ]
prod_noM = [ele for ele in prod if not ele[1]=='M' ]
reac_args_noM = [ele for ele in reac_args if not ele=='M' ]
for term in [ele for ele in reac_args if not ele=='M' ] :
rate_str += "y[" + str(chem_dict[term]) + "], "
rate_str = rate_str[0:-2] + ")"
v_exp += 'k[' + str(j) + ']*'
for term in reac:
if term[0]!=1:
if term[1]== 'M':
v_exp += term[1] + "**" + str(term[0]) + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']' + "**" + str(term[0]) + '*'
else:
if term[1]== 'M':
v_exp += term[1] + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']*'
v_exp = v_exp[0:-1] # Delete the last '*'
v_exp += ' - k[' + str(j+1) + ']*'
for term in prod:
if term[0]!=1:
if term[1]== 'M':
v_exp += term[1] + "**" + str(term[0]) + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']' + "**" + str(term[0]) + '*'
else:
if term[1]== 'M':
v_exp += term[1] + '*'
else:
v_exp += 'y[' + str(chem_dict[term[1]]) + ']*'
v_exp = v_exp[0:-1] # Delete the last '*'
for term in reac_noM:
# term[0] is the stoi-number of the species
reac_dict[chem_dict[term[1]]] += " -" + str(term[0]) + "*" + rate_str
if term[0]==1:
exp_reac_dict[chem_dict[term[1]]] += " -" + "(" + v_exp + ')'
count += 1
else:
exp_reac_dict[chem_dict[term[1]]] += " -" + str(term[0]) + "*(" + v_exp + ')'
count += 1
for term in prod_noM:
reac_dict[chem_dict[term[1]]] += " +" + str(term[0]) + "*" + rate_str
if term[0]==1:
exp_reac_dict[chem_dict[term[1]]] += " +" + "(" + v_exp + ')'
count += 1
else:
exp_reac_dict[chem_dict[term[1]]] += " +" + str(term[0]) + "*(" + v_exp + ')'
count += 1
######################## for constructing Gibbs free energy ########################
for term in reac_noM:
gibbs += '-' + str(term[0]) + '*' + "gibbs_sp('" + str(term[1]) +"',T)"
reac_num += term[0]
for term in prod_noM:
gibbs += '+' + str(term[0]) + '*' + "gibbs_sp('" + str(term[1]) +"',T)"
prod_num += term[0]
gibbs += ' ) )'
if prod_num - reac_num != 0:
gibbs += '*(corr*T)**' + str(reac_num - prod_num)
gibbs_dict[j] = gibbs
######################## for constructing Gibbs free energy ########################
v_str = "#" + line + "\n"
v_str += "v_" + str(j) + " = lambda "
for term in reac_args_noM:
v_str += term + ", "
v_str = v_str[0:-2] + " : "
# j: ->
# j+1: <-
v_str += 'k[' + str(j) + ']*'
for term in reac:
if term[0]!=1:
v_str += term[1] + "**" + str(term[0]) + '*'
else:
v_str += term[1] + '*'
v_str = v_str[0:-1] # Delete the last '*'
v_str += ' - k[' + str(j+1) + ']*'
for term in prod:
if term[0]!=1:
v_str += term[1] + "**" + str(term[0]) + '*'
else:
v_str += term[1] + '*'
v_str = v_str[0:-1]
reac_list.append(v_str)
#ouput of each single rate from k1...
rate_exp += 'k[' + str(j) + ']*'
for term in reac:
if term[1] == 'M':
rate_exp += 'M*'
else:
if term[0]==1:
rate_exp += ('y['+str(chem_dict[term[1]])+']*' )
else:
rate_exp += ('y['+str(chem_dict[term[1]])+']**'+str(term[0])+'*' )
rate_exp = rate_exp[0:-1] # Delete the last '*'
rate_dict[j] = rate_exp
rate_exp = ''
rate_exp += 'k[' + str(j+1) + ']*' #j+1 even number for reverse index
for term in prod:
if term[1] == 'M':
rate_exp += 'M*'
else:
if term[0]==1:
rate_exp += ('y['+str(chem_dict[term[1]])+']*' )
else:
rate_exp += ('y['+str(chem_dict[term[1]])+']**'+str(term[0])+'*' )
rate_exp = rate_exp[0:-1] # Delete the last '*'
rate_dict[j+1] = rate_exp
with open(gibbs_text) as g:
for line in g:
gstr += line
gstr += '\n\n'
gstr += '# Gibbs free energy:\n'
gstr += 'def Gibbs(i,T):\n'
gstr += '\t G={}\n'.expandtabs(3)
for _ in gibbs_dict:
gstr += '\t G['.expandtabs(3) +str(_)+'] = lambda T: ' + str(gibbs_dict[_]) + '\n'
gstr += '\t return G[i](T)\n\n'.expandtabs(3)
with open(ofname, 'a+') as f:
f.write(gstr)
def make_jac(ni, nr, ofname):
'''
to make the analytical Jocobian matrix of chemdf
'''
M = Symbol('M')
y, k = [], []
for i in range(ni):
y.append( Symbol('y[:,'+str(i)+']') )
for i in range(nr+1):
k.append( Symbol('k['+str(i)+']') )
# chemistry is the "ofname" module
dy = Matrix(chemistry.df(y,M,k))
x = Matrix(y)
jac = dy.jacobian(x)
jstr = '\ndef symjac(y, M, k): \n'
jstr += '\t nz = vulcan_cfg.nz\n'.expandtabs(3)
jstr += '\t dfdy = np.zeros(shape=[ni*nz, ni*nz]) \n'.expandtabs(3)
jstr += '\t indx = [] \n'.expandtabs(3)
jstr += '\t for j in range(ni): \n'.expandtabs(3)
jstr += '\t indx.append( np.arange(j,j+ni*nz,ni) ) \n'.expandtabs(7)
for i in range(ni):
for j in range(ni):
jstr += '\t dfdy[indx['.expandtabs(3) + str(i) + '], indx[' + str(j) +']] = ' + str(jac[i,j]) + '\n'
jstr += '\t return dfdy \n\n'.expandtabs(3)
# save the output function
with open (ofname, 'a+') as f: f.write(jstr)
def make_neg_jac(ni, nr, ofname):
'''
to make the analytical Jocobian matrix of chemdf
'''
M = Symbol('M')
y, k = [], []
for i in range(ni):
y.append( Symbol('y[:,'+str(i)+']') )
for i in range(nr+1):
k.append( Symbol('k['+str(i)+']') )
# chemistry is the "ofname" module
dy = Matrix(chemistry.df(y,M,k))
x = Matrix(y)
jac = dy.jacobian(x)
jstr = '\ndef neg_symjac(y, M, k): \n'
jstr += '\t nz = vulcan_cfg.nz\n'.expandtabs(3)
jstr += '\t dfdy = np.zeros(shape=[ni*nz, ni*nz]) \n'.expandtabs(3)
jstr += '\t indx = [] \n'.expandtabs(3)
jstr += '\t for j in range(ni): \n'.expandtabs(3)
jstr += '\t indx.append( np.arange(j,j+ni*nz,ni) ) \n'.expandtabs(7)
for i in range(ni):
for j in range(ni):
jstr += '\t dfdy[indx['.expandtabs(3) + str(i) + '], indx[' + str(j) +']] = -(' + str(jac[i,j]) + ')\n'
jstr += '\t return dfdy \n\n'.expandtabs(3)
# save the output function
with open (ofname, 'a+') as f: f.write(jstr)
def check_conserv():
from chem_funs import re_dict
conserv_check = True
compo = np.genfromtxt(vulcan_cfg.com_file,names=True,dtype=None)
compo_row = list(compo['species'])
# Convert bytes to strings
compo_row = [sp.decode("utf-8") for sp in compo_row]
#print (compo_row)
num_atoms = len(compo.dtype.names) - 2 # dtype.names returns the column names and -2 is for 'species' and 'mass'
for re in range(1,nr+1,2):
reac_atoms, prod_atoms = np.zeros(num_atoms), np.zeros(num_atoms)
for sp in re_dict[re][0]:
# 1:7 for all the atoms (H O C He N S)
reac_atoms += np.array(list(compo[compo_row.index(sp)])[1:num_atoms+1])
for sp in re_dict[re][1]:
prod_atoms += np.array(list(compo[compo_row.index(sp)])[1:num_atoms+1])
if not np.all(reac_atoms == prod_atoms):
print ('Re ' + str(re) + ' not conserving element!')
conserv_check = False
if conserv_check == True:
print ('Elements conserved in the network.')
else:
raise IOError ('\nElements are not conserved in the reaction. Check the network!\n')
def check_duplicate(nr, photo_re_indx):
from chem_funs import re_wM_dict
if photo_re_indx >0: re_end = photo_re_indx-1
else: re_end = nr
dup_list = []
for re in range(1,re_end,2):
for re_oth in range(1,re_end,2):
if re != re_oth:
if set(re_wM_dict[re][0]) == set(re_wM_dict[re_oth][0]) and set(re_wM_dict[re][1]) == set(re_wM_dict[re_oth][1]) or set(re_wM_dict[re][0]) == set(re_wM_dict[re_oth][1]) and set(re_wM_dict[re][1]) == set(re_wM_dict[re_oth][0]):
# if prod of R_re == prod of R_re' and reac of R_re == react of R_re' or reac of R_re == prod of R_re' and prod of R_re == react
dup_check = True
if {re,re_oth} not in dup_list:
dup_list.append({re,re_oth})
print ('Re' + str(re) + ' and '+ 'Re' + str(re_oth) + ' are duplicates!')
if not dup_list: print ('No duplicates in the network.')
# def make_rate_ans(spec_list, ofname):
# '''
# make a function for showing individually every production and loss term for each species
# '''
#
# ost = 'def rate_ans(sp): \n'
# ost += '\t rate_str = {}\n'.expandtabs(3)
# ost += '\t re_sp_dic = {}\n'.expandtabs(3)
#
# re_sp_dic = {}
# for sp in spec_list:
# ost += ' rate_str["'+sp+'"] = ['
# re_sp_dic[sp] = []
# for i in sp_rate2[sp]:
# ost += i
# ost += ','
# start, end = False, False
# for n,letter in enumerate(i):
# if letter == 'k' and start==False:
# k_start=n+2
# start = True
# elif letter == ']' and start==True and end==False:
# k_end = n
# end = True
# re_sp_dic[sp].append(int(i[k_start:k_end]))
#
# ost = ost[0:-1]
# ost += ']'
# ost += '\n'
# ost += '\t return np.array(rate_str[sp]) \n\n'.expandtabs(3)
#
# # save the output function
# with open (ofname, 'a+') as f: f.write(ost)
if __name__ == "__main__":
re_table, photo_table, photo_re_indx = read_network()
(ni, nr, species) = make_chemdf(re_table, ofname)
make_Gibbs(re_table, gibbs_text, ofname)
# import the "ofname" module as chemistry for make_jac to read df
chemistry = __import__(ofname[:-3])
make_jac(ni, nr, ofname) # the last function that writes into chem_funs.py
make_neg_jac(ni, nr, ofname)
check_conserv()
check_duplicate(nr, photo_re_indx)