-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomp_many.py
109 lines (98 loc) · 4.11 KB
/
comp_many.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#%%
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.lines as mlines
import os
import plot_reset as pr
def name_for_plot(name):
new_name = ''
surface = False
for letter in name:
if letter == 'J':
surface = True
elif letter.isnumeric() == True:
new_name += '$_'+letter+'$'
elif letter == '+' or letter == '-':
if letter[-1] == '$':
new_name = new_name[:-1] + '^' + letter + '$'
else:
new_name += '$^'+letter+'$'
else:
new_name += letter
if surface == True:
new_name += '$_s$'
return new_name
main_folder = '/lustre/astro/gfriss'
def comp_spec(fold, species, ice = True):
''' Finding the given species also in their ice form (if needed) since the
temperature are low for the single point model.
Returns the changed conditions and the corresponding abundaces.'''
X = {}
if ice == True:
X_ice = {}
jspecies, kspecies = [], []
for spec in species:
jspecies.append('J'+spec)
kspecies.append('K'+spec)
X['J'+spec] = []
X_ice['J'+spec] = []
X_ice['K'+spec] = []
for spec in species:
X[spec] = []
for folder in sorted(os.listdir(os.path.join(main_folder,fold))):
sim = os.path.join(main_folder,fold,folder)
if os.path.isdir(sim) == True:
path = os.path.join(main_folder,fold,folder,'ab')
for file in os.listdir(path):
if file[:-3] in species:
with open(path + '/' + file) as f:
X[file[:-3]].append(float(f.readlines()[-1].split()[-1]))
if ice == True and file[:-3] in jspecies:
with open(path + '/' + file) as f:
X_ice[file[:-3]].append(float(f.readlines()[-1].split()[-1]))
elif ice == True and file[:-3] in kspecies:
with open(path + '/' + file) as f:
X_ice[file[:-3]].append(float(f.readlines()[-1].split()[-1]))
if ice == True:
for spec in species:
X['J'+spec] = list(np.array(X_ice['J'+spec]) + np.array(X_ice['K'+spec]))
# parameter values either from folder name or the input file or the jupyter notebook (many_sim)
# let's go with the jupyter notebook version so that this can get the species
# -> the values will be according to the parameter value order in the notebook
return X
def plot(param, X, xlab, fsize = (8,6), xscale = 'log', yscale = 'log', figname = None):
fig, ax = plt.subplots(figsize = fsize)
colour = {}
for spec in X.keys():
if spec[0] == 'J':
p = ax.plot(param, X[spec], label = name_for_plot(spec[1:]))
colour[spec[1:]] = p[0].get_color()
else:
ax.plot(param, X[spec], color = colour[spec], linestyle = ':')
ax.set_xscale(xscale)
ax.set_yscale(yscale)
ax.set_xlabel(xlab)
ax.set_ylabel(r'n(X)/n(H$_2$)')
ax.legend(loc = 10, bbox_to_anchor = (1.2, 0.5))
if figname != None:
fig.savefig(figname, bbox_inches = 'tight')
pr.reset_plt(20, 20)
spec1 = ['CO', 'HCO', 'H2CO', 'CH3O', 'CH2OH', 'CH3OH']
spec2 = ['HCOOCH3', 'HCOOH', 'NH2CHO', 'HNCO']
nsim= 15
T_p = np.logspace(2, 6, nsim-1)
T_p = np.concatenate((np.array([0.]), T_p))
#%%
X = comp_spec('pre_phase', spec1)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_phase', 'pre1.pdf'))
X = comp_spec('pre_phase', spec2)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_phase', 'pre2.pdf'))
X = comp_spec('pre_12K', spec1)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_12K', 'pre1_12K.pdf'))
X = comp_spec('pre_12K', spec2)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_12K', 'pre2_12K.pdf'))
#%%
X = comp_spec('pre_15K', spec1)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_15K', 'pre1_15K.pdf'))
X = comp_spec('pre_15K', spec2)
plot(T_p, X, r'$\tau_{pre}$ [yr]', figname = os.path.join(main_folder, 'pre_15K', 'pre2_15K.pdf'))