forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncf_keras_main.py
533 lines (430 loc) · 18.5 KB
/
ncf_keras_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.
The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
# pylint: disable=g-bad-import-order
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.recommendation import constants as rconst
from official.recommendation import movielens
from official.recommendation import ncf_common
from official.recommendation import ncf_input_pipeline
from official.recommendation import neumf_model
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.utils.misc import model_helpers
from official.utils.flags import core as flags_core
FLAGS = flags.FLAGS
def metric_fn(logits, dup_mask, params):
dup_mask = tf.cast(dup_mask, tf.float32)
logits = tf.slice(logits, [0, 1], [-1, -1])
in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
logits,
dup_mask,
params["match_mlperf"])
metric_weights = tf.cast(metric_weights, tf.float32)
return in_top_k, metric_weights
class MetricLayer(tf.keras.layers.Layer):
"""Custom layer of metrics for NCF model."""
def __init__(self, params):
super(MetricLayer, self).__init__()
self.params = params
def call(self, inputs, training=False):
logits, dup_mask = inputs
if training:
hr_sum = 0.0
hr_count = 0.0
else:
metric, metric_weights = metric_fn(logits, dup_mask, self.params)
hr_sum = tf.reduce_sum(metric * metric_weights)
hr_count = tf.reduce_sum(metric_weights)
self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
self.add_metric(hr_count, name="hr_count", aggregation="mean")
return logits
class LossLayer(tf.keras.layers.Layer):
"""Pass-through loss layer for NCF model."""
def __init__(self, loss_normalization_factor):
# The loss may overflow in float16, so we use float32 instead.
super(LossLayer, self).__init__(dtype="float32")
self.loss_normalization_factor = loss_normalization_factor
self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction="sum")
def call(self, inputs):
logits, labels, valid_pt_mask_input = inputs
loss = self.loss(
y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
loss = loss * (1.0 / self.loss_normalization_factor)
self.add_loss(loss)
return logits
class IncrementEpochCallback(tf.keras.callbacks.Callback):
"""A callback to increase the requested epoch for the data producer.
The reason why we need this is because we can only buffer a limited amount of
data. So we keep a moving window to represent the buffer. This is to move the
one of the window's boundaries for each epoch.
"""
def __init__(self, producer):
self._producer = producer
def on_epoch_begin(self, epoch, logs=None):
self._producer.increment_request_epoch()
class CustomEarlyStopping(tf.keras.callbacks.Callback):
"""Stop training has reached a desired hit rate."""
def __init__(self, monitor, desired_value):
super(CustomEarlyStopping, self).__init__()
self.monitor = monitor
self.desired = desired_value
self.stopped_epoch = 0
def on_epoch_end(self, epoch, logs=None):
current = self.get_monitor_value(logs)
if current and current >= self.desired:
self.stopped_epoch = epoch
self.model.stop_training = True
def on_train_end(self, logs=None):
if self.stopped_epoch > 0:
print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
def get_monitor_value(self, logs):
logs = logs or {}
monitor_value = logs.get(self.monitor)
if monitor_value is None:
logging.warning("Early stopping conditioned on metric `%s` "
"which is not available. Available metrics are: %s",
self.monitor, ",".join(list(logs.keys())))
return monitor_value
def _get_keras_model(params):
"""Constructs and returns the model."""
batch_size = params["batch_size"]
user_input = tf.keras.layers.Input(
shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
item_input = tf.keras.layers.Input(
shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
valid_pt_mask_input = tf.keras.layers.Input(
shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
dup_mask_input = tf.keras.layers.Input(
shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
label_input = tf.keras.layers.Input(
shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
base_model = neumf_model.construct_model(user_input, item_input, params)
logits = base_model.output
zeros = tf.keras.layers.Lambda(
lambda x: x * 0)(logits)
softmax_logits = tf.keras.layers.concatenate(
[zeros, logits],
axis=-1)
# Custom training loop calculates loss and metric as a part of
# training/evaluation step function.
if not params["keras_use_ctl"]:
softmax_logits = MetricLayer(params)([softmax_logits, dup_mask_input])
# TODO(b/134744680): Use model.add_loss() instead once the API is well
# supported.
softmax_logits = LossLayer(batch_size)(
[softmax_logits, label_input, valid_pt_mask_input])
keras_model = tf.keras.Model(
inputs={
movielens.USER_COLUMN: user_input,
movielens.ITEM_COLUMN: item_input,
rconst.VALID_POINT_MASK: valid_pt_mask_input,
rconst.DUPLICATE_MASK: dup_mask_input,
rconst.TRAIN_LABEL_KEY: label_input},
outputs=softmax_logits)
keras_model.summary()
return keras_model
def run_ncf(_):
"""Run NCF training and eval with Keras."""
keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)
if FLAGS.seed is not None:
print("Setting tf seed")
tf.random.set_seed(FLAGS.seed)
params = ncf_common.parse_flags(FLAGS)
model_helpers.apply_clean(flags.FLAGS)
if FLAGS.dtype == "fp16" and FLAGS.fp16_implementation == "keras":
policy = tf.keras.mixed_precision.experimental.Policy(
"mixed_float16",
loss_scale=flags_core.get_loss_scale(FLAGS, default_for_fp16="dynamic"))
tf.keras.mixed_precision.experimental.set_policy(policy)
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=FLAGS.distribution_strategy,
num_gpus=FLAGS.num_gpus,
tpu_address=FLAGS.tpu)
params["distribute_strategy"] = strategy
if not keras_utils.is_v2_0() and strategy is not None:
logging.error("NCF Keras only works with distribution strategy in TF 2.0")
return
if (params["keras_use_ctl"] and (
not keras_utils.is_v2_0() or strategy is None)):
logging.error(
"Custom training loop only works with tensorflow 2.0 and dist strat.")
return
if params["use_tpu"] and not params["keras_use_ctl"]:
logging.error("Custom training loop must be used when using TPUStrategy.")
return
batch_size = params["batch_size"]
time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
callbacks = [time_callback]
producer, input_meta_data = None, None
generate_input_online = params["train_dataset_path"] is None
if generate_input_online:
# Start data producing thread.
num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
producer.start()
per_epoch_callback = IncrementEpochCallback(producer)
callbacks.append(per_epoch_callback)
else:
assert params["eval_dataset_path"] and params["input_meta_data_path"]
with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
input_meta_data = json.loads(reader.read().decode("utf-8"))
num_users = input_meta_data["num_users"]
num_items = input_meta_data["num_items"]
params["num_users"], params["num_items"] = num_users, num_items
if FLAGS.early_stopping:
early_stopping_callback = CustomEarlyStopping(
"val_HR_METRIC", desired_value=FLAGS.hr_threshold)
callbacks.append(early_stopping_callback)
(train_input_dataset, eval_input_dataset,
num_train_steps, num_eval_steps) = \
(ncf_input_pipeline.create_ncf_input_data(
params, producer, input_meta_data, strategy))
steps_per_epoch = None if generate_input_online else num_train_steps
with distribution_utils.get_strategy_scope(strategy):
keras_model = _get_keras_model(params)
optimizer = tf.keras.optimizers.Adam(
learning_rate=params["learning_rate"],
beta_1=params["beta1"],
beta_2=params["beta2"],
epsilon=params["epsilon"])
if FLAGS.fp16_implementation == "graph_rewrite":
optimizer = \
tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
optimizer,
loss_scale=flags_core.get_loss_scale(FLAGS,
default_for_fp16="dynamic"))
elif FLAGS.dtype == "fp16" and params["keras_use_ctl"]:
# When keras_use_ctl is False, instead Model.fit() automatically applies
# loss scaling so we don't need to create a LossScaleOptimizer.
optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
optimizer,
tf.keras.mixed_precision.experimental.global_policy().loss_scale)
if params["keras_use_ctl"]:
train_loss, eval_results = run_ncf_custom_training(
params,
strategy,
keras_model,
optimizer,
callbacks,
train_input_dataset,
eval_input_dataset,
num_train_steps,
num_eval_steps,
generate_input_online=generate_input_online)
else:
# TODO(b/138957587): Remove when force_v2_in_keras_compile is on longer
# a valid arg for this model. Also remove as a valid flag.
if FLAGS.force_v2_in_keras_compile is not None:
keras_model.compile(
optimizer=optimizer,
run_eagerly=FLAGS.run_eagerly,
experimental_run_tf_function=FLAGS.force_v2_in_keras_compile)
else:
keras_model.compile(
optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)
history = keras_model.fit(
train_input_dataset,
epochs=FLAGS.train_epochs,
steps_per_epoch=steps_per_epoch,
callbacks=callbacks,
validation_data=eval_input_dataset,
validation_steps=num_eval_steps,
verbose=2)
logging.info("Training done. Start evaluating")
eval_loss_and_metrics = keras_model.evaluate(
eval_input_dataset, steps=num_eval_steps, verbose=2)
logging.info("Keras evaluation is done.")
# Keras evaluate() API returns scalar loss and metric values from
# evaluation as a list. Here, the returned list would contain
# [evaluation loss, hr sum, hr count].
eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]
# Format evaluation result into [eval loss, eval hit accuracy].
eval_results = [eval_loss_and_metrics[0], eval_hit_rate]
if history and history.history:
train_history = history.history
train_loss = train_history["loss"][-1]
stats = build_stats(train_loss, eval_results, time_callback)
return stats
def run_ncf_custom_training(params,
strategy,
keras_model,
optimizer,
callbacks,
train_input_dataset,
eval_input_dataset,
num_train_steps,
num_eval_steps,
generate_input_online=True):
"""Runs custom training loop.
Args:
params: Dictionary containing training parameters.
strategy: Distribution strategy to be used for distributed training.
keras_model: Model used for training.
optimizer: Optimizer used for training.
callbacks: Callbacks to be invoked between batches/epochs.
train_input_dataset: tf.data.Dataset used for training.
eval_input_dataset: tf.data.Dataset used for evaluation.
num_train_steps: Total number of steps to run for training.
num_eval_steps: Total number of steps to run for evaluation.
generate_input_online: Whether input data was generated by data producer.
When data is generated by data producer, then train dataset must be
re-initialized after every epoch.
Returns:
A tuple of train loss and a list of training and evaluation results.
"""
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
reduction="sum", from_logits=True)
train_input_iterator = iter(
strategy.experimental_distribute_dataset(train_input_dataset))
def train_step(train_iterator):
"""Called once per step to train the model."""
def step_fn(features):
"""Computes loss and applied gradient per replica."""
with tf.GradientTape() as tape:
softmax_logits = keras_model(features)
# The loss can overflow in float16, so we cast to float32.
softmax_logits = tf.cast(softmax_logits, "float32")
labels = features[rconst.TRAIN_LABEL_KEY]
loss = loss_object(
labels,
softmax_logits,
sample_weight=features[rconst.VALID_POINT_MASK])
loss *= (1.0 / params["batch_size"])
if FLAGS.dtype == "fp16":
loss = optimizer.get_scaled_loss(loss)
grads = tape.gradient(loss, keras_model.trainable_variables)
if FLAGS.dtype == "fp16":
grads = optimizer.get_unscaled_gradients(grads)
# Converting gradients to dense form helps in perf on GPU for NCF
grads = neumf_model.sparse_to_dense_grads(
list(zip(grads, keras_model.trainable_variables)))
optimizer.apply_gradients(grads)
return loss
per_replica_losses = strategy.experimental_run_v2(
step_fn, args=(next(train_iterator),))
mean_loss = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
return mean_loss
def eval_step(eval_iterator):
"""Called once per eval step to compute eval metrics."""
def step_fn(features):
"""Computes eval metrics per replica."""
softmax_logits = keras_model(features)
in_top_k, metric_weights = metric_fn(softmax_logits,
features[rconst.DUPLICATE_MASK],
params)
hr_sum = tf.reduce_sum(in_top_k * metric_weights)
hr_count = tf.reduce_sum(metric_weights)
return hr_sum, hr_count
per_replica_hr_sum, per_replica_hr_count = (
strategy.experimental_run_v2(
step_fn, args=(next(eval_iterator),)))
hr_sum = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
hr_count = strategy.reduce(
tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
return hr_sum, hr_count
if not FLAGS.run_eagerly:
train_step = tf.function(train_step)
eval_step = tf.function(eval_step)
for callback in callbacks:
callback.on_train_begin()
train_loss = 0
for epoch in range(FLAGS.train_epochs):
for cb in callbacks:
cb.on_epoch_begin(epoch)
# As NCF dataset is sampled with randomness, not repeating
# data elements in each epoch has significant impact on
# convergence. As so, offline-generated TF record files
# contains all epoch worth of data. Thus we do not need
# to initialize dataset when reading from tf record files.
if generate_input_online:
train_input_iterator = iter(
strategy.experimental_distribute_dataset(train_input_dataset))
train_loss = 0
for step in range(num_train_steps):
current_step = step + epoch * num_train_steps
for c in callbacks:
c.on_batch_begin(current_step)
train_loss += train_step(train_input_iterator)
for c in callbacks:
c.on_batch_end(current_step)
train_loss /= num_train_steps
logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
train_loss)
eval_input_iterator = iter(
strategy.experimental_distribute_dataset(eval_input_dataset))
hr_sum = 0
hr_count = 0
for _ in range(num_eval_steps):
step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
hr_sum += step_hr_sum
hr_count += step_hr_count
logging.info("Done eval epoch %s, hr=%s.", epoch + 1, hr_sum / hr_count)
if (FLAGS.early_stopping and
float(hr_sum / hr_count) > params["hr_threshold"]):
break
for c in callbacks:
c.on_train_end()
return train_loss, [None, hr_sum / hr_count]
def build_stats(loss, eval_result, time_callback):
"""Normalizes and returns dictionary of stats.
Args:
loss: The final loss at training time.
eval_result: Output of the eval step. Assumes first value is eval_loss and
second value is accuracy_top_1.
time_callback: Time tracking callback likely used during keras.fit.
Returns:
Dictionary of normalized results.
"""
stats = {}
if loss:
stats["loss"] = loss
if eval_result:
stats["eval_loss"] = eval_result[0]
stats["eval_hit_rate"] = eval_result[1]
if time_callback:
timestamp_log = time_callback.timestamp_log
stats["step_timestamp_log"] = timestamp_log
stats["train_finish_time"] = time_callback.train_finish_time
if len(timestamp_log) > 1:
stats["avg_exp_per_second"] = (
time_callback.batch_size * time_callback.log_steps *
(len(time_callback.timestamp_log)-1) /
(timestamp_log[-1].timestamp - timestamp_log[0].timestamp))
return stats
def main(_):
with logger.benchmark_context(FLAGS), \
mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
run_ncf(FLAGS)
if __name__ == "__main__":
ncf_common.define_ncf_flags()
app.run(main)