-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy patheval_text.py
152 lines (123 loc) · 6.35 KB
/
eval_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# --- Base packages ---
import os
import numpy as np
import matplotlib.pyplot as plt
import sklearn.metrics as metrics
# --- PyTorch packages ---
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.utils.data as data
import torchvision.models as models
import torchvision.datasets as datasets
import torchvision.transforms as transforms
# --- Project Packages ---
from utils import save, load, train, test
from datasets import MIMIC, NLMCXR, TextDataset
from models import Classifier, TNN
from baselines.transformer.models import LSTM_Attn
# --- Hyperparameters ---
os.environ["CUDA_VISIBLE_DEVICES"] = "3"
os.environ["OMP_NUM_THREADS"] = "1"
torch.set_num_threads(1)
torch.manual_seed(seed=0)
DATASET_NAME = 'MIMIC' # MIMIC / NLMCXR
MODEL_NAME = 'LSTM' # Transformer / LSTM
BATCH_SIZE = 32
TEXT_FILE = 'outputs/{}_ClsGen_DenseNet121_MaxView2_NumLabel114_NoHistory_Hyp.txt'.format(DATASET_NAME)
LABEL_FILE = 'outputs/{}_ClsGen_DenseNet121_MaxView2_NumLabel114_NoHistory_Lbl.txt'.format(DATASET_NAME)
if __name__ == "__main__":
# --- Choose Inputs/Outputs
if MODEL_NAME == 'Transformer':
SOURCES = ['caption']
TARGETS = ['label']
KW_SRC = ['txt'] # kwargs of Classifier
KW_TGT = None
KW_OUT = None
elif MODEL_NAME == 'LSTM':
SOURCES = ['caption', 'caption_length']
TARGETS = ['label']
KW_SRC = ['caption', 'caption_length'] # kwargs of LSTM_Attn
KW_TGT = None
KW_OUT = None
else:
raise ValueError('Invalid MODEL_NAME')
# --- Choose a Dataset ---
if DATASET_NAME == 'MIMIC':
INPUT_SIZE = (256,256)
MAX_VIEWS = 2
NUM_LABELS = 114 # (14 diseases + 100 top noun-phrases)
NUM_CLASSES = 2
dataset = TextDataset(text_file=TEXT_FILE, label_file=LABEL_FILE, sources=SOURCES, targets=TARGETS,
vocab_file='/home/hoang/Datasets/MIMIC/mimic_unigram_1000.model', max_len=1000)
VOCAB_SIZE = len(dataset.vocab)
POSIT_SIZE = dataset.max_len
COMMENT = 'MaxView{}_NumLabel{}'.format(MAX_VIEWS, NUM_LABELS)
elif DATASET_NAME == 'NLMCXR':
INPUT_SIZE = (256,256)
MAX_VIEWS = 2
NUM_LABELS = 114 # (14 diseases + 100 top noun-phrases)
NUM_CLASSES = 2
dataset = TextDataset(text_file=TEXT_FILE, label_file=LABEL_FILE, sources=SOURCES, targets=TARGETS,
vocab_file='/home/hoang/Datasets/NLMCXR/nlmcxr_unigram_1000.model', max_len=1000)
VOCAB_SIZE = len(dataset.vocab)
POSIT_SIZE = dataset.max_len
COMMENT = 'MaxView{}_NumLabel{}'.format(MAX_VIEWS, NUM_LABELS)
else:
raise ValueError('Invalid DATASET_NAME')
# --- Choose a Model ---
if MODEL_NAME == 'Transformer':
NUM_EMBEDS = 256
NUM_HEADS = 8
FWD_DIM = 256
NUM_LAYERS = 1
DROPOUT = 0.1
tnn = TNN(embed_dim=NUM_EMBEDS, num_heads=NUM_HEADS, fwd_dim=FWD_DIM, dropout=DROPOUT, num_layers=NUM_LAYERS, num_tokens=VOCAB_SIZE, num_posits=POSIT_SIZE)
model = Classifier(num_topics=NUM_LABELS, num_states=NUM_CLASSES, cnn=None, tnn=tnn, embed_dim=NUM_EMBEDS, num_heads=NUM_HEADS, dropout=DROPOUT)
elif MODEL_NAME == 'LSTM':
# Justin et al. hyper-parameters
NUM_EMBEDS = 256
HIDDEN_SIZE = 128
DROPOUT = 0.1
model = LSTM_Attn(num_tokens=VOCAB_SIZE, embed_dim=NUM_EMBEDS, hidden_size=HIDDEN_SIZE, num_topics=NUM_LABELS, num_states=NUM_CLASSES, dropout=DROPOUT)
else:
raise ValueError('Invalid MODEL_NAME')
# --- Main program ---
data_loader = data.DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=8)
model = nn.DataParallel(model).cuda()
checkpoint_path_from = 'checkpoints/{}_{}_{}.pt'.format(DATASET_NAME,MODEL_NAME,COMMENT)
last_epoch, (best_metric, test_metric) = load(checkpoint_path_from, model)
print('Reload From: {} | Last Epoch: {} | Validation Metric: {} | Test Metric: {}'.format(checkpoint_path_from, last_epoch, best_metric, test_metric))
test_loss, test_outputs, test_targets = test(data_loader, model, device='cuda', kw_src=KW_SRC, kw_tgt=KW_TGT, kw_out=KW_OUT)
# --- Evaluation ---
test_auc = []
test_f1 = []
test_prc = []
test_rec = []
test_acc = []
threshold = 0.5
NUM_LABELS = 14
for i in range(NUM_LABELS):
try:
test_auc.append(metrics.roc_auc_score(test_targets.cpu()[...,i], test_outputs.cpu()[...,i,1]))
test_f1.append(metrics.f1_score(test_targets.cpu()[...,i], test_outputs.cpu()[...,i,1] > threshold))
test_prc.append(metrics.precision_score(test_targets.cpu()[...,i], test_outputs.cpu()[...,i,1] > threshold))
test_rec.append(metrics.recall_score(test_targets.cpu()[...,i], test_outputs.cpu()[...,i,1] > threshold))
test_acc.append(metrics.accuracy_score(test_targets.cpu()[...,i], test_outputs.cpu()[...,i,1] > threshold))
except:
print('An error occurs for label', i)
test_auc = np.mean([x for x in test_auc if str(x) != 'nan'])
test_f1 = np.mean([x for x in test_f1 if str(x) != 'nan'])
test_prc = np.mean([x for x in test_prc if str(x) != 'nan'])
test_rec = np.mean([x for x in test_rec if str(x) != 'nan'])
test_acc = np.mean([x for x in test_acc if str(x) != 'nan'])
print('Accuracy : {}'.format(test_acc))
print('Macro AUC : {}'.format(test_auc))
print('Macro F1 : {}'.format(test_f1))
print('Macro Precision: {}'.format(test_prc))
print('Macro Recall : {}'.format(test_rec))
print('Micro AUC : {}'.format(metrics.roc_auc_score(test_targets.cpu()[...,:NUM_LABELS] == 1, test_outputs.cpu()[...,:NUM_LABELS,1], average='micro')))
print('Micro F1 : {}'.format(metrics.f1_score(test_targets.cpu()[...,:NUM_LABELS] == 1, test_outputs.cpu()[...,:NUM_LABELS,1] > threshold, average='micro')))
print('Micro Precision: {}'.format(metrics.precision_score(test_targets.cpu()[...,:NUM_LABELS] == 1, test_outputs.cpu()[...,:NUM_LABELS,1] > threshold, average='micro')))
print('Micro Recall : {}'.format(metrics.recall_score(test_targets.cpu()[...,:NUM_LABELS] == 1, test_outputs.cpu()[...,:NUM_LABELS,1] > threshold, average='micro')))