-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathFeature_Extraction_After_Feature_Selection.py
43 lines (34 loc) · 1.61 KB
/
Feature_Extraction_After_Feature_Selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import pandas as pd
import librosa
import numpy as np
from scipy.ndimage import gaussian_filter1d
# get filenames
df = pd.read_csv('./UrbanSound8K.csv', usecols=['slice_file_name', 'fold', 'classID'],
dtype={'slice_file_name': str, 'fold': str, 'classID': int})
address_fields = df.to_numpy()
features = np.zeros(shape=(8732, 810), dtype=np.float64)
def pack_features(extracted_feature):
delta = gaussian_filter1d(extracted_feature, sigma=1, order=1, mode='nearest')
delta_delta = gaussian_filter1d(extracted_feature, sigma=1, order=2, mode='nearest')
mean_vector = np.concatenate(
(np.mean(extracted_feature, axis=1), np.mean(delta, axis=1), np.mean(delta_delta, axis=1)))
var_vector = np.concatenate((np.var(extracted_feature, axis=1), np.var(delta, axis=1), np.var(delta_delta, axis=1)))
feature_vector = np.concatenate((mean_vector, var_vector))
return feature_vector
# load audio samples from filenames and extract their features
for index, item in enumerate(address_fields):
# show the progress
print(index)
# determine the sample's filename
path = ".//fold" + item[1] + '//' + item[0]
# load the sample
audio, sample_rate = librosa.load(path)
# feature extraction
# mfcc
mfc = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=128, n_fft=1024)
# spectral contrast
cnt = librosa.feature.spectral_contrast(y=audio, sr=sample_rate)
features[index, 0:768] = pack_features(mfc)
features[index, 768:810] = pack_features(cnt)
# save the dataset
np.save("dataset.npy", features, allow_pickle=True)