-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformula_converter.py
159 lines (123 loc) · 4.85 KB
/
formula_converter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from collections import deque
class FormulaConverter:
@staticmethod
def __find_bracets(s: str, start_position: int, revers: bool = False):
everything = ''
brackets = deque()
used_range = range(start_position, len(s))
if revers:
used_range = range(start_position, -1, -1)
appending_elem, popping_elem = '(', ')'
if revers:
appending_elem, popping_elem = ')', '('
first_symbol_flag = True
checking_flag = ''
for i in used_range:
char = s[i]
everything += char
if first_symbol_flag:
if char == appending_elem:
checking_flag = 'brackets'
else:
checking_flag = 'ending'
first_symbol_flag = False
if checking_flag == 'brackets':
if char == appending_elem:
brackets.append(appending_elem)
elif char == popping_elem:
brackets.popleft()
if len(brackets) == 0:
if revers:
not_arc = s[i - 1:i - 4:-1][::-1]
if not_arc in ['sin', 'cos']:
everything += not_arc[::-1]
arc = s[i - 1:i - 7:-1][::-1]
if arc in ['arcsin', 'arccos']:
everything += arc[::-1]
break
elif checking_flag == 'ending':
if char == appending_elem or char == popping_elem:
everything = everything[:-1]
break
if revers:
everything = everything[::-1]
return everything
@staticmethod
def __find_right(s: str, start_position: int):
return FormulaConverter.__find_bracets(s, start_position, False)
@staticmethod
def __find_left(s: str, start_position: int):
return FormulaConverter.__find_bracets(s, start_position, True)
@staticmethod
def __replace_to_pow_trigonometry(s: str):
# matches = []
# for trigonometry_function in ['sin', 'cos', 'arcsin', 'arccos']:
# matches += [m.start() for m in re.finditer(f'{trigonometry_function}\^', s)]
for trigonometry_function in ['sin', 'cos', 'arcsin', 'arccos']:
match_index = -1
while True:
match_index = s.find(f'{trigonometry_function}^', match_index + 1)
if match_index == -1:
break
start = s.find('^', match_index)
first = FormulaConverter.__find_right(s, start + 1)
second = FormulaConverter.__find_right(s, start + 1 + len(first))
old = f'^{first}{second}'
new = f'{second}^{first}'
s = s.replace(old, new)
return s
@staticmethod
def __replace_to_pow_usual(s: str):
# matches = [m.start() for m in re.finditer('\^', s)]
match_index = -1
while True:
match_index = s.find('^', match_index + 1)
if match_index == -1:
break
start = s.find('^', match_index)
left = FormulaConverter.__find_left(s, start - 1)
right = FormulaConverter.__find_right(s, start + 1)
old = f'{left}^{right}'
new = f'Math.pow({left}, {right})'
s = s.replace(old, new)
return s
@staticmethod
def replace_to_pow(s: str):
s = FormulaConverter.__replace_to_pow_trigonometry(s)
s = FormulaConverter.__replace_to_pow_usual(s)
return s
@staticmethod
def replace_other(s: str):
s = s.replace('x', 'x[j]')
s = s.replace('e', 'Math.E')
s = s.replace('pi', 'Math.PI')
s = s.replace('abs', 'Math.abs')
s = s.replace('ln', 'Math.log')
s = s.replace('root(2)', 'Math.sqrt')
s = s.replace('root(3)', 'Math.cbrt')
s = s.replace('arcsin', 'Math.asiN')
s = s.replace('arccos', 'Math.acoS')
s = s.replace('arctan', 'Math.ataN')
s = s.replace('sin', 'Math.sin')
s = s.replace('cos', 'Math.cos')
s = s.replace('tan', 'Math.tan')
s = s.replace('Math.asiN', 'Math.asin')
s = s.replace('Math.acoS', 'Math.acos')
s = s.replace('Math.ataN', 'Math.atan')
return s
@staticmethod
def convert_formula(s: str):
s = FormulaConverter.replace_to_pow(s)
s = FormulaConverter.replace_other(s)
return s
def main():
s = 'e^(e^(4*(1/2+x)))+1/2'
# s = 'arcsin(e^(root(3)(-sin^2(x))))'
# s = 'ln(sin^2((1/3/(3/4+x)/x)^2))'
# s = 'sin((3*(cos(x)-1))^((3*x)^3))'
# s = 'e^(e^(4*(1/2+x)))+1/2'
print(s)
result = FormulaConverter.convert_formula(s)
print(result)
if __name__ == '__main__':
main()