-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlabeling.py
228 lines (173 loc) · 5.25 KB
/
labeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import typing
import time
import os
import spacy
import pymysql
from docx import Document
from datetime import datetime
start = time.time()
collins = {5: -1, 4: -1, 3: 0, 2: 1, 1: 2, 0: 3}
oxford = {1: -3, 0: 0}
tag = {"zk": -2, "gk": -1, "cet4": 0, "ky": 1, "cet6": 1, "toefl": 1,
"ielts": -1, "gre": 1}
maximum =[-1, -1, 0, 0, 1]
catagory = ["spoken language", "fiction", "megazine", "newspaper",
"academic material"]
endnotes = {}
label_index = []
log = open("log.txt", "w+", encoding="utf-8")
secrets = open("secrets.txt", "r", encoding="utf-8").readlines()
path = secrets[0][:-1]
pwd = secrets[1]
docx_files = []
latest_date = None
latest_file = None
now = datetime.now()
month = str(now.month)
if len(month) == 1:
month = "0"+month
date = str(now.year) + "-" + month
for n in os.listdir(path+"\\"+date):
if n[-5:] == ".docx":
file_date = os.path.getmtime(path+"\\"+date+"\\"+n)
if latest_date is None or file_date > latest_date:
latest_date = file_date
latest_file = n
doc = Document(path+"\\"+date+"\\"+latest_file)
spacy.require_gpu()
nlp = spacy.load('en_core_web_trf')
db = pymysql.connect(
host="localhost",
user="root",
password=pwd,
database="dict"
)
cursor = db.cursor()
def find_max(l:list) -> int:
local_max = 0
idx = 0
i = 0
for n in l:
if n > local_max:
local_max = n
idx = i
i += 1
return idx
def evaluation(data:tuple) -> str:
cursor.execute(f'SELECT * FROM freq WHERE word="{data[1]}";')
freq = cursor.fetchone()
score = 5
score += collins[data[2]]
score += oxford[data[3]]
if data[4] == "":
score += 1
else:
counter = 0
for n in data[4].split(" "):
score += tag[n]
counter += 1
if counter > 3:
score -= 1
if freq != None:
highest = find_max(freq[4:])
score += maximum[highest]
if freq[0] <= 4500:
score -= 2
elif freq[0] <= 7500:
score -= 1
elif freq[0] > 9000:
score += 1
most_freq = f", appear most in {catagory[highest]}"
else:
most_freq = ""
if score > 7:
return f"score: {score}{most_freq}"
return ""
def word_query(word:str) -> list:
if word in endnotes:
return []
cursor.execute(f'SELECT * FROM words WHERE word="{word}";')
word_data = cursor.fetchone()
if word_data == None:
return []
score = evaluation(word_data)
anno = word
if word_data[5] != "":
if word_data[5] in endnotes:
return[]
cursor.execute(f'SELECT * FROM words WHERE word="{word_data[5]}";')
lemma_data = cursor.fetchone()
if lemma_data != None:
lemma_score = evaluation(lemma_data)
if lemma_score != "" and score != "":
if int(lemma_score.split(",")[0][7:]) < int(score.split(",")[0][7:]):
score = lemma_score
anno = word_data[5]
elif lemma_score == "":
return []
if score != "":
cursor.execute(f'SELECT * FROM dict WHERE word="{anno}";')
meaning = cursor.fetchone()
if meaning[2] == "":
pos2 = ""
else:
pos2 = f"/{meaning[2]}/"
if meaning != None:
return [word, f"{pos2}: {meaning[3]}\n{meaning[4]} -{score}"]
return []
def tokenize(text):
entities = nlp(text).ents
idx = {ent.start_char: ent.end_char for ent in entities}
labels = []
temp: str = ""
index = 0
ignore = -1
while index < len(text):
if index in idx:
ignore = idx[index]
index += 1
continue
elif ignore != -1:
if index != ignore:
index += 1
continue
else:
ignore = -1
if text[index].isalpha():
temp += text[index]
elif text[index] in "'’-":
temp += text[index]
elif temp != "":
if len(temp) > 2 and "’" not in temp:
result = word_query(temp.lower())
if result != [] and result[0] not in endnotes:
endnotes[result[0]] = result[1]
print(f"{result[0]}", file=log)
labels.append(index)
temp = ""
index += 1
label_index.append(labels)
num_para = len(doc.paragraphs)
mark_count = 1
for i in range(num_para):
para_text = doc.paragraphs[i].text
tokenize(para_text)
if label_index[i] != []:
new_text = list(para_text)
new_text.insert(label_index[i][0], f"({mark_count}.)")
mark_count += 1
p = 1
while p < len(label_index[i]):
new_text.insert(label_index[i][p] + (p - 1) + 1,
f"({mark_count}.)")
p += 1
mark_count += 1
doc.paragraphs[i].text = new_text
count = 1
for n in endnotes:
new_para = doc.add_paragraph(f'({count}.) ')
new_para.add_run(n).bold = True
new_para.add_run(endnotes[n])
count += 1
doc.save(f'{latest_file[:-5]}_annotated.docx')
print(f"time spent: {(time.time() - start):.2f}")