forked from tonton81/ESP32_CAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathESP32_CAN.tpp
539 lines (481 loc) · 20.7 KB
/
ESP32_CAN.tpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
/*
MIT License
Copyright (c) 2018 Antonio Alexander Brewer (tonton81) - https://github.com/tonton81
Designed and tested for ESP32.
Thanks goes to skpang, mjs513, and collin for tech/testing support
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and / or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <ESP32_CAN.h>
#include "esp_system.h"
#if defined(ESP_IDF_VERSION_MAJOR) && ESP_IDF_VERSION_MAJOR > 3
#include "esp_intr_alloc.h"
#else
#include "esp_intr.h"
#endif
#include "soc/dport_reg.h"
#include "driver/gpio.h"
TaskHandle_t CANBUS_TASK = NULL;
static void _CAN_TASK(void * parameter) {
while(1) {
static volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
while( !(addr[REG_IER] & 0x1) ) vTaskDelay(1000);
/*
If bus-off is triggered, the controller disables itself with no
self-recovery. The CPU must manually re-enable the controller.
*/
if ( (addr[REG_MOD] & 0x1) ) addr[REG_MOD] &= ~0x1;
/*
If the controller is active:
1) if the error counters exceed the limit, reset the counters
2) transmit only when bus-on and counter limit is not flagged.
*/
if ( !(addr[REG_MOD] & 0x1) ) { /* not in reset mode */
if ( (addr[REG_SR] & 0xC0) ) {
addr[REG_MOD] |= 0x1;
addr[REG_RXERR] = addr[REG_TXERR] = 0x00;
addr[REG_MOD] &= ~0x1;
}
if ( !_CAN->isEventsUsed && _CAN->messages_available() ) _CAN->_CAN_EVENTS_COMMON();
if ( !((addr[REG_SR] & 0xC0) == 0xC0) ) { /* transmit only when bus off and error states are good */
_CAN->tx_task();
}
}
vTaskDelay(1);
}
vTaskDelete( NULL );
}
ESP32_CAN_FUNC ESP32_CAN_OPT::ESP32_CAN() {
_CAN = this;
xTaskCreatePinnedToCore(
_CAN_TASK, /* Task function. */
"_CAN_TASK", /* name of task. */
2048 * 2, /* Stack size of task */
NULL, /* parameter of the task */
4, /* priority of the task */
&CANBUS_TASK,
1); /* CORE 1 */
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setTX(uint8_t pin) {
gpio_set_direction((gpio_num_t)pin, GPIO_MODE_OUTPUT);
gpio_matrix_out((gpio_num_t)pin, CAN_TX_IDX, 0, 0);
gpio_pad_select_gpio((gpio_num_t)pin);
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setRX(uint8_t pin) {
gpio_set_direction((gpio_num_t)pin, GPIO_MODE_INPUT);
gpio_matrix_in((gpio_num_t)pin, CAN_RX_IDX, 0);
gpio_pad_select_gpio((gpio_num_t)pin);
}
ESP32_CAN_FUNC uint32_t ESP32_CAN_OPT::setBaudRate(uint32_t baud, ESP32_CAN_LISTEN_ONLY listen_only) {
ESP32_CAN_TASK_SUSPEND;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
currentBitrate = baud;
bool wasResetMode = !(addr[REG_MOD] & 0x1);
addr[REG_MOD] |= 0x1;
int error, brp, tseg, tseg1 = 0, tseg2 = 0, MAX_TSEG1 = 15,
MAX_TSEG2 = 7, best_error = 1000000000,
best_tseg = 0, best_brp = 0, best_baud = 0,
JUMPWIDTH = 0x40, SAM = (baud > 100000 ? 0 : 1),
SAMPLE_POINT = 75, clock = 80000000 >> 1;
for (tseg = (0 + 0 + 2) * 2; tseg <= (MAX_TSEG2 + MAX_TSEG1 + 2) * 2 + 1; tseg++) {
brp = clock / ((1 + tseg / 2) * baud) + tseg % 2;
if ((brp > 0) && (brp <= 64)) {
error = baud - clock / (brp * (1 + tseg / 2));
if (error < 0) error = -error;
if (error <= best_error) {
best_error = error;
best_tseg = tseg / 2;
best_brp = brp - 1;
best_baud = clock / (brp * (1 + tseg / 2));
}
}
}
tseg2 = best_tseg - (SAMPLE_POINT * (best_tseg + 1)) / 100;
if (tseg2 < 0) tseg2 = 0;
else if (tseg2 > MAX_TSEG2) tseg2 = MAX_TSEG2;
tseg1 = best_tseg - tseg2 - 2;
if (tseg1 > MAX_TSEG1) {
tseg1 = MAX_TSEG1;
tseg2 = best_tseg - tseg1 - 2;
}
int priv_btr = ((best_brp | JUMPWIDTH)<<8) + ((SAM << 7) | (tseg2 << 4) | tseg1);
addr[REG_CDR] = 0xCF; /* pelican mode, clockout disabled, comparator disabled */
addr[REG_BTR0] = priv_btr >> 8;
addr[REG_BTR1] = priv_btr;
addr[REG_RXERR] = addr[REG_TXERR] = 0x00; /* reset error counters */
( listen_only == LISTEN_ONLY ) ? addr[REG_MOD] |= 0x2 : addr[REG_MOD] &= ~0x2;
if ( wasResetMode ) addr[REG_MOD] &= ~0x1;
ESP32_CAN_TASK_RESTORE;
return best_baud;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::begin() {
vTaskSuspend(CANBUS_TASK); /* suspend task until configured */
for (uint8_t i = 0; i < SIZE_LISTENERS; i++) listener[i] = nullptr;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
DPORT_CLEAR_PERI_REG_MASK(DPORT_PERIP_RST_EN_REG, DPORT_CAN_RST);
DPORT_SET_PERI_REG_MASK(DPORT_PERIP_CLK_EN_REG, DPORT_CAN_CLK_EN);
setBaudRate(currentBitrate, LISTEN_ONLY);
addr[REG_MOD] |= 0x1;
for ( uint8_t i = 0; i < 4; i++ ) { /* set filters to allow everything */
addr[REG_ACRn(i)] = 0x0;
addr[REG_AMRn(i)] = 0xFF;
}
addr[REG_OCR] = 0x02; /* normal output mode */
(void)addr[REG_ECC]; /* clear errors */
(void)addr[REG_IR]; /* clear interrupts */
addr[REG_MOD] = 0xA; /* single filter mode, listen only mode */
addr[REG_IER] = 0x1; /* receive interrupt */
vTaskResume(CANBUS_TASK); /* resume task after configuration */
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::onReceive(_ESP32_CAN_ptr handler) {
_mainHandler = handler;
if (_intrHandle) {
esp_intr_free(_intrHandle);
_intrHandle = nullptr;
}
esp_intr_alloc(ETS_CAN_INTR_SOURCE, 0, ESP32_CAN_OPT::onInterrupt, this, &_intrHandle);
}
ESP32_CAN_FUNC uint8_t ESP32_CAN_OPT::error_report() {
if ( !error ) return 0;
Serial.println("\n\n****************************************\n");
Serial.print("*** Error Report: ");
if ( ((error & 0xC0) >> 6) == 0 ) Serial.print("bit error");
if ( ((error & 0xC0) >> 6) == 1 ) Serial.print("form error");
if ( ((error & 0xC0) >> 6) == 2 ) Serial.print("stuff error");
if ( ((error & 0xC0) >> 6) == 3 ) Serial.print("other type of error");
Serial.printf(" Direction: %s ", ((error & 0x20) ? "RX" : "TX"));
if ( (error & 0x1F) == 0b00011 ) Serial.print("start of frame");
if ( (error & 0x1F) == 0b00010 ) Serial.print("ID.28 to ID.21");
if ( (error & 0x1F) == 0b00110 ) Serial.print("ID.20 to ID.18");
if ( (error & 0x1F) == 0b00100 ) Serial.print("bit SRTR");
if ( (error & 0x1F) == 0b00101 ) Serial.print("bit IDE");
if ( (error & 0x1F) == 0b00111 ) Serial.print("ID.17 to ID.13");
if ( (error & 0x1F) == 0b01111 ) Serial.print("ID.12 to ID.5");
if ( (error & 0x1F) == 0b01110 ) Serial.print("ID.4 to ID.0");
if ( (error & 0x1F) == 0b01100 ) Serial.print("bit RTR");
if ( (error & 0x1F) == 0b01101 ) Serial.print("reserved bit 1");
if ( (error & 0x1F) == 0b01001 ) Serial.print("reserved bit 0");
if ( (error & 0x1F) == 0b01010 ) Serial.print("data field");
if ( (error & 0x1F) == 0b01000 ) Serial.print("CRC sequence");
if ( (error & 0x1F) == 0b11000 ) Serial.print("CRC delimiter");
if ( (error & 0x1F) == 0b11001 ) Serial.print("acknowledge slot");
if ( (error & 0x1F) == 0b11011 ) Serial.print("acknowledge delimiter");
if ( (error & 0x1F) == 0b11010 ) Serial.print("end of frame");
if ( (error & 0x1F) == 0b10010 ) Serial.print("intermission");
if ( (error & 0x1F) == 0b10001 ) Serial.print("active error flag");
if ( (error & 0x1F) == 0b10110 ) Serial.print("passive error flag");
if ( (error & 0x1F) == 0b10011 ) Serial.print("tolerate dominant bits");
if ( (error & 0x1F) == 0b10111 ) Serial.print("error delimiter");
if ( (error & 0x1F) == 0b11100 ) Serial.print("overload flag");
Serial.println("\n****************************************\n");
return error;
}
ESP32_CAN_FUNC void IRAM_ATTR ESP32_CAN_OPT::handleInterrupt() {
CAN_message_t msg;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
uint8_t interrupt = addr[REG_IR], cmr = 0;
error = addr[REG_ECC];
/*
I found a new bug in the hardware FIFO. If the ECC register reports errors
(no relation to the RXERR/TXERR registers), that frame may be corrupt and
partially written to FIFO while the pointer shifts, thereby reporting a valid
frame when it is not. This register is only active if you have bad line issues.
Bad cabling/termination, hot-plugging, and shorting the CANH/CANL lines for
stability checks. This workaround discards 1x FIFO queue per interrupt if the
ECC register is being flagged. If the line returns to normal then so does
the ISR. Bug was found during a slave node setup with switch statement, and an
un-called switch call was triggered very intermittantly over long periods of time.
It became aparent more intermittant as I started shorting the line multiple times
and seeing the switch statement being fired, even though I was not calling it!
This has ressolved that issue.
*/
if ( error ) {
addr[REG_CMR] = 0xC;
return;
}
/*
Always check the RMC (NOT JUST the IER receive interrupt bit).
I have noticed the RMC sometimes returns 0 when an interrupt occurs.
The RMC is the count of queues in the HW FIFO.
*/
if ( (interrupt & (1U << 0)) && (addr[REG_RMC]) ) { /* Receive Interrupt */
msg.flags.extended = (addr[REG_SFF] & 0x80) ? true : false;
msg.flags.remote = (addr[REG_SFF] & 0x40) ? true : false;
msg.len = (addr[REG_SFF] & 0x0f);
if (msg.flags.extended) {
msg.id = (addr[REG_EFF + 1] << 21) | (addr[REG_EFF + 2] << 13) | (addr[REG_EFF + 3] << 5) | (addr[REG_EFF + 4] >> 3);
for (int i = 0; i < msg.len; i++) msg.buf[i] = addr[REG_EFF + 5 + i];
} else {
msg.id = (addr[REG_SFF + 1] << 3) | ((addr[REG_SFF + 2] >> 5) & 0x07);
for (int i = 0; i < msg.len; i++) msg.buf[i] = addr[REG_SFF + 3 + i];
}
if (msg.flags.remote) msg.len = 0;
cmr |= (1U << 2); /* Release Receive Buffer */
struct2queueRx(msg);
}
if (interrupt & (1U << 0)) { /* transmit interrupt */
}
if (interrupt & (1U << 3)) {
cmr |= (1U << 3); /* Clear Data Overrun */
}
addr[REG_CMR] |= cmr;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::struct2queueRx(const CAN_message_t &msg) {
uint8_t buf[sizeof(CAN_message_t)];
memmove(buf, &msg, sizeof(msg));
rxBuffer.push_back(buf, sizeof(CAN_message_t));
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::struct2queueTx(const CAN_message_t &msg) {
uint8_t buf[sizeof(CAN_message_t)];
memmove(buf, &msg, sizeof(msg));
txBuffer.push_back(buf, sizeof(CAN_message_t));
}
ESP32_CAN_FUNC int ESP32_CAN_OPT::write(const CAN_message_t &msg) {
if ( txBuffer.size() == txBuffer.capacity() ) return 0;
struct2queueTx(msg);
return 1;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::tx_task() {
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
if ( txBuffer.size() && ( addr[REG_SR] & (1U << 2) ) ) {
CAN_message_t msg;
uint8_t buf[sizeof(CAN_message_t)];
txBuffer.pop_front(buf, sizeof(CAN_message_t));
memmove(&msg, buf, sizeof(msg));
if (msg.flags.extended) {
addr[REG_EFF] = 0x80 | (msg.flags.remote ? 0x40 : 0x00) | msg.len;
addr[REG_EFF + 1] = msg.id >> 21;
addr[REG_EFF + 2] = msg.id >> 13;
addr[REG_EFF + 3] = msg.id >> 5;
addr[REG_EFF + 4] = msg.id << 3;
for (int i = 0; i < msg.len; i++) addr[REG_EFF + 5 + i] = msg.buf[i];
} else {
addr[REG_SFF] = (msg.flags.remote ? 0x40 : 0x00) | msg.len;
addr[REG_SFF + 1] = msg.id >> 3;
addr[REG_SFF + 2] = msg.id << 5;
for (int i = 0; i < msg.len; i++) addr[REG_SFF + 3 + i] = msg.buf[i];
}
addr[REG_CMR] = 1;
}
}
ESP32_CAN_FUNC uint64_t ESP32_CAN_OPT::events() {
if ( !_CAN->isEventsUsed ) _CAN->isEventsUsed = 1;
_CAN_EVENTS_COMMON();
return (uint64_t)(rxBuffer.size() << 12) | txBuffer.size();
}
ESP32_CAN_FUNC void IRAM_ATTR ESP32_CAN_OPT::_CAN_EVENTS_COMMON() {
if ( rxBuffer.size() ) {
CAN_message_t frame;
uint8_t buf[sizeof(CAN_message_t)];
rxBuffer.pop_front(buf, sizeof(CAN_message_t));
memmove(&frame, buf, sizeof(frame));
if ( _mainHandler ) _mainHandler(frame);
if ( ext_output1 ) ext_output1(frame);
if ( ext_output2 ) ext_output2(frame);
if ( ext_output3 ) ext_output3(frame);
CANListener *thisListener;
CAN_message_t cl = frame;
for (uint8_t listenerPos = 0; listenerPos < SIZE_LISTENERS; listenerPos++) {
thisListener = listener[listenerPos];
if (thisListener != nullptr) {
if (thisListener->generalCallbackActive) thisListener->frameHandler (cl, -1, 0);
}
}
}
}
ESP32_CAN_FUNC bool ESP32_CAN_OPT::attachObj (CANListener *listener) {
for (uint8_t i = 0; i < SIZE_LISTENERS; i++) {
if (this->listener[i] == nullptr) {
this->listener[i] = listener;
return true;
}
}
return false;
}
ESP32_CAN_FUNC bool ESP32_CAN_OPT::detachObj (CANListener *listener) {
for (uint8_t i = 0; i < SIZE_LISTENERS; i++) {
if (this->listener[i] == listener) {
this->listener[i] = nullptr;
return true;
}
}
return false;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setFilter(uint32_t id, ESP32_CAN_IDE frame_type) {
ESP32_CAN_TASK_SUSPEND;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
bool wasResetMode = !(addr[REG_MOD] & 0x1);
addr[REG_MOD] |= 0x1;
addr[REG_MOD] |= 0x8; /* single frame mode */
if ( frame_type == ASSUMED_IDE) {
if ( id <= 0x7FF ) frame_type = STD; // Standard frame
else frame_type = EXT; // Extended frame
}
if ( frame_type == STD ) { // Standard frame
id &= 0x7FF;
uint32_t mask = ~((((id) ^ (id)) ^ 0x7FF) & 0x7FF);
addr[REG_ACRn(0)] = (uint8_t)(id >> 3);
addr[REG_ACRn(1)] = (uint8_t)(id << 5);
addr[REG_ACRn(2)] = 0x0;
addr[REG_ACRn(3)] = 0x0;
addr[REG_AMRn(0)] = (mask >> 3);
addr[REG_AMRn(1)] = (mask << 5);
addr[REG_AMRn(2)] = 0xFF;
addr[REG_AMRn(3)] = 0xFF;
}
else { // Extended frame
id &= 0x1FFFFFFF;
uint32_t mask = ~((((id) ^ (id)) ^ 0x1FFFFFFF) & 0x1FFFFFFF);
addr[REG_ACRn(0)] = (uint8_t)((id << (3)) >> 24);
addr[REG_ACRn(1)] = (uint8_t)((id << (3)) >> 16);
addr[REG_ACRn(2)] = (uint8_t)((id << (3)) >> 8);
addr[REG_ACRn(3)] = (uint8_t)((id << (3)) >> 0);
addr[REG_AMRn(0)] = (uint8_t)((mask << (3)) >> 24);
addr[REG_AMRn(1)] = (uint8_t)((mask << (3)) >> 16);
addr[REG_AMRn(2)] = (uint8_t)((mask << (3)) >> 8);
addr[REG_AMRn(3)] = (uint8_t)((mask << (3)) >> 0);
}
if ( wasResetMode ) addr[REG_MOD] &= ~0x1;
ESP32_CAN_TASK_RESTORE;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setFilter(uint32_t id1, uint32_t id2, ESP32_CAN_IDE frame_type) {
ESP32_CAN_TASK_SUSPEND;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
bool wasResetMode = !(addr[REG_MOD] & 0x1);
addr[REG_MOD] |= 0x1;
addr[REG_MOD] &= ~0x8; /* dual frame mode */
if ( frame_type == ASSUMED_IDE ) {
if ( id1 <= 0x7FF && id2 <= 0x7FF ) { // Double Standard frames
id1 &= 0x7FF;
id2 &= 0x7FF;
uint32_t mask = ~((((id1) ^ (id1)) ^ 0x7FF) & 0x7FF);
addr[REG_ACRn(0)] = (uint8_t)(id1 >> 3);
addr[REG_ACRn(1)] = ((uint8_t)(id1 << 5)) & 0xF0;
addr[REG_ACRn(2)] = (uint8_t)(id2 >> 3);
addr[REG_ACRn(3)] = ((uint8_t)(id2 << 5)) & 0xF0;
addr[REG_AMRn(0)] = (mask >> 3);
addr[REG_AMRn(1)] = ((mask << 5)) | 0xF;
mask = ~((((id2) ^ (id2)) ^ 0x7FF) & 0x7FF);
addr[REG_AMRn(2)] = (mask >> 3);
addr[REG_AMRn(3)] = ((mask << 5) | 0xF);
}
else if ( id1 > 0x7FF && id2 > 0x7FF ) { // Double Extended frames
id1 &= 0x1FFFFFFF;
id2 &= 0x1FFFFFFF;
uint32_t mask = ~((((id1) ^ (id1)) ^ 0x1FFFFFFF) & 0x1FFFFFFF);
addr[REG_ACRn(0)] = (uint8_t)((id1 << (3)) >> 24);
addr[REG_ACRn(1)] = (uint8_t)((id1 << (3)) >> 16);
addr[REG_ACRn(2)] = (uint8_t)((id2 << (3)) >> 24);
addr[REG_ACRn(3)] = (uint8_t)((id2 << (3)) >> 16);
addr[REG_AMRn(0)] = (uint8_t)((mask << (3)) >> 24);
addr[REG_AMRn(1)] = (uint8_t)((mask << (3)) >> 16);
mask = ~((((id2) ^ (id2)) ^ 0x1FFFFFFF) & 0x1FFFFFFF);
addr[REG_AMRn(2)] = (uint8_t)((mask << (3)) >> 24);
addr[REG_AMRn(3)] = (uint8_t)((mask << (3)) >> 16);
}
}
if ( wasResetMode ) addr[REG_MOD] &= ~0x1;
ESP32_CAN_TASK_RESTORE;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setFilter(uint32_t id1, uint32_t id2, uint32_t id3, ESP32_CAN_IDE frame_type) {
ESP32_CAN_TASK_SUSPEND;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
bool wasResetMode = !(addr[REG_MOD] & 0x1);
addr[REG_MOD] |= 0x1;
addr[REG_MOD] |= 0x8; /* single frame mode */
if ( frame_type == ASSUMED_IDE ) {
if ( id1 <= 0x7FF ) frame_type = STD; // Standard frame
else frame_type = EXT; // Extended frame
}
if ( frame_type == STD ) { // Standard frame
id1 &= 0x7FF;
id2 &= 0x7FF;
uint32_t mask = ~((((id1 | id2 | id3) ^ (id1 & id2 &id3)) ^ 0x7FF) & 0x7FF);
addr[REG_ACRn(0)] = (uint8_t)(id1 >> 3);
addr[REG_ACRn(1)] = (uint8_t)(id1 << 5);
addr[REG_ACRn(2)] = 0x0;
addr[REG_ACRn(3)] = 0x0;
addr[REG_AMRn(0)] = (mask >> 3);
addr[REG_AMRn(1)] = (mask << 5);
addr[REG_AMRn(2)] = 0xFF;
addr[REG_AMRn(3)] = 0xFF;
}
else { // Extended frame
id1 &= 0x1FFFFFFF;
id2 &= 0x1FFFFFFF;
uint32_t mask = ~((((id1 | id2 | id3) ^ (id1 & id2 & id3)) ^ 0x1FFFFFFF) & 0x1FFFFFFF);
addr[REG_ACRn(0)] = (uint8_t)((id1 << (3)) >> 24);
addr[REG_ACRn(1)] = (uint8_t)((id1 << (3)) >> 16);
addr[REG_ACRn(2)] = (uint8_t)((id1 << (3)) >> 8);
addr[REG_ACRn(3)] = (uint8_t)((id1 << (3)) >> 0);
addr[REG_ACRn(0)] = (uint8_t)((mask << (3)) >> 24);
addr[REG_ACRn(1)] = (uint8_t)((mask << (3)) >> 16);
addr[REG_ACRn(2)] = (uint8_t)((mask << (3)) >> 8);
addr[REG_ACRn(3)] = (uint8_t)((mask << (3)) >> 0);
}
if ( wasResetMode ) addr[REG_MOD] &= ~0x1;
ESP32_CAN_TASK_RESTORE;
}
ESP32_CAN_FUNC void ESP32_CAN_OPT::setFilterRange(uint32_t id1, uint32_t id2, ESP32_CAN_IDE frame_type) {
ESP32_CAN_TASK_SUSPEND;
volatile uint32_t *addr = &(*(volatile uint32_t*)(REG_BASE));
bool wasResetMode = !(addr[REG_MOD] & 0x1);
addr[REG_MOD] |= 0x1;
addr[REG_MOD] |= 0x8; /* single frame mode */
if ( frame_type == ASSUMED_IDE ) {
if ( id1 <= 0x7FF ) frame_type = STD; // Standard frame
else frame_type = EXT; // Extended frame
}
if ( frame_type == STD ) { // Standard frame
id1 &= 0x7FF;
id2 &= 0x7FF;
uint32_t stage1 = id1, stage2 = id1;
for ( uint32_t i = id1 + 1; i <= id2; i++ ) {
stage1 |= i; stage2 &= i;
}
uint32_t mask = ~((((stage1) ^ (stage2)) ^ 0x7FF) & 0x7FF);
addr[REG_ACRn(0)] = (uint8_t)(id1 >> 3);
addr[REG_ACRn(1)] = (uint8_t)(id1 << 5);
addr[REG_ACRn(2)] = 0x0;
addr[REG_ACRn(3)] = 0x0;
addr[REG_AMRn(0)] = (mask >> 3);
addr[REG_AMRn(1)] = (mask << 5);
addr[REG_AMRn(2)] = 0xFF;
addr[REG_AMRn(3)] = 0xFF;
}
else { // Extended frame
id1 &= 0x1FFFFFFF;
id2 &= 0x1FFFFFFF;
uint32_t stage1 = id1, stage2 = id1;
for ( uint32_t i = id1 + 1; i <= id2; i++ ) {
stage1 |= i; stage2 &= i;
}
uint32_t mask = ~((((stage1) ^ (stage2)) ^ 0x1FFFFFFF) & 0x1FFFFFFF);
addr[REG_ACRn(0)] = (uint8_t)((id1 << (3)) >> 24);
addr[REG_ACRn(1)] = (uint8_t)((id1 << (3)) >> 16);
addr[REG_ACRn(2)] = (uint8_t)((id1 << (3)) >> 8);
addr[REG_ACRn(3)] = (uint8_t)((id1 << (3)) >> 0);
addr[REG_AMRn(0)] = (uint8_t)((mask << (3)) >> 24);
addr[REG_AMRn(1)] = (uint8_t)((mask << (3)) >> 16);
addr[REG_AMRn(2)] = (uint8_t)((mask << (3)) >> 8);
addr[REG_AMRn(3)] = (uint8_t)((mask << (3)) >> 0);
}
if ( wasResetMode ) addr[REG_MOD] &= ~0x1;
ESP32_CAN_TASK_RESTORE;
}
extern void __attribute__((weak)) ext_output1(const CAN_message_t &msg);
extern void __attribute__((weak)) ext_output2(const CAN_message_t &msg);
extern void __attribute__((weak)) ext_output3(const CAN_message_t &msg);