-
Notifications
You must be signed in to change notification settings - Fork 163
/
Copy pathtransformer_test.py
55 lines (48 loc) · 1.75 KB
/
transformer_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for transformer."""
from absl.testing import parameterized
from robotics_transformer import transformer
import tensorflow as tf
class TransformerTest(parameterized.TestCase):
def setUp(self):
self._vocab_size = 10
batch_size = 8
sequence_len = 12
self._tokens = tf.random.uniform(
[batch_size, sequence_len, self._vocab_size],
minval=0,
maxval=1,
dtype=tf.dtypes.float32,
)
super(TransformerTest, self).setUp()
@parameterized.parameters(True, False)
def test_transformer_forwardpass(self, return_attention_scores):
network = transformer.Transformer(
num_layers=2,
layer_size=512,
num_heads=4,
feed_forward_size=256,
dropout_rate=0.1,
vocab_size=self._vocab_size,
return_attention_scores=return_attention_scores)
output_tokens, attention_scores = network(self._tokens, attention_mask=None)
self.assertSequenceEqual(self._tokens.shape.as_list(),
output_tokens.shape.as_list())
if return_attention_scores:
self.assertNotEmpty(attention_scores)
else:
self.assertEmpty(attention_scores)
if __name__ == '__main__':
tf.test.main()