-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathmesh.py
608 lines (530 loc) · 18.4 KB
/
mesh.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
# coding=utf-8
# Copyright 2022-2023 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Code for simulating spring mesh systems.
Minimizes the energy of a rectangular grid of Hookean springs with nearest-
and next-nearest neighbor connections using numerical integration of the
corresponding ODE system. Energy minimization is achieved by physically
simulating dissipation with damping, or indirectly in the integrator when
the FIRE method is used.
Positions are always stored in relative format, i.e. the (i, j)-th node
of the grid with stride Δ having value (Δx, Δy) represents the physical
position of (i * Δ + Δx, j * Δ + Δy).
"""
import collections
import dataclasses
import functools
from typing import Sequence
from absl import logging
import dataclasses_json
import jax
import jax.numpy as jnp
import numpy as np
# NOTE: This is likely a good candidate for acceleration with a custom CUDA
# kernel on GPUs.
def inplane_force(
x: jnp.ndarray,
k: float,
stride: Sequence[float],
prefer_orig_order: bool = False,
) -> jnp.ndarray:
"""Computes in-plane forces on the nodes of a spring mesh.
Args:
x: [2, z, y, x] array of mesh node positions, in relative format
k: spring constant
stride: XY stride of the spring mesh grid
prefer_orig_order: whether to change the force formulation so that the
original relative spatial ordering of the nodes is energetically preferred
Returns:
[2, z, y, x] array of forces
"""
if len(stride) != 2:
raise ValueError('stride must be 2D.')
l0 = np.array(stride)
l0_diag = np.linalg.norm(l0)
def _xy_vec(x, y):
return jnp.array([x, y]).reshape([2, 1, 1, 1])
# Normal Hookean springs have a force discontinuity at length = 0. When the
# springs are arranged in a mesh, and the order of neighboring nodes flips
# during mesh simulation, the new configuration (m2) is energetically
# preferred:
#
# force
# ^ \ \
# | \ . \
# +-----------m2---*---m1-----> x
# | \ . \
# | \ \
#
# (the diagram illustrates the force on a mesh node adjacent to a reference
# node indicated by *)
#
# This is undesirable as it favors the formation of mesh folds in the presence
# of external forces strong enough to overcome the spring resistance.
#
# To avoid this, we introduce a vector field factor for l0 in the formulas
# below, which causes the original mesh node order to be favored, and
# modifies the force so that only a single minimum at m1 exists:
#
# force
# ^ \
# | \
# | \
# +----------------*---m1-----> x
# | \
# | \
#
# In changing the formulation in this way we sacrifice the ability of the mesh
# to rotate (which would flip the node order), which is fine since this code
# is expected to be used on data with prealigned sections with no significant
# relative rotation.
#
# As of Sep 2021, using the fold-preventing force formulation can cause up to
# a 50% performance penalty on a P100/V100 GPU.
#
# - springs
dx = x[..., 1:] - x[..., :-1] + _xy_vec(l0[0], 0)
l = jnp.linalg.norm(dx, axis=0)
if prefer_orig_order:
f1 = (
-k
* (1.0 - l0[0] * jnp.array([jnp.sign(dx[0]), jnp.ones_like(dx[1])]) / l)
* dx
)
else:
f1 = -k * (1.0 - l0[0] / l) * dx
f1 = jnp.nan_to_num(f1, copy=False, posinf=0.0, neginf=0.0)
f1p = jnp.pad(f1, ((0, 0), (0, 0), (0, 0), (1, 0)))
f1n = jnp.pad(f1, ((0, 0), (0, 0), (0, 0), (0, 1)))
# | springs
dx = x[..., 1:, :] - x[..., :-1, :] + _xy_vec(0, l0[1])
l = jnp.linalg.norm(dx, axis=0)
if prefer_orig_order:
f2 = (
-k
* (1.0 - l0[1] * jnp.array([jnp.ones_like(dx[0]), jnp.sign(dx[1])]) / l)
* dx
)
else:
f2 = -k * (1.0 - l0[1] / l) * dx
f2 = jnp.nan_to_num(f2, copy=False, posinf=0.0, neginf=0.0)
f2p = jnp.pad(f2, ((0, 0), (0, 0), (1, 0), (0, 0)))
f2n = jnp.pad(f2, ((0, 0), (0, 0), (0, 1), (0, 0)))
# We want to keep elasticity E constant, and k ~ E/l.
k2 = k / jnp.sqrt(2.0)
# \ springs
dx = x[:, :, 1:, 1:] - x[:, :, :-1, :-1] + _xy_vec(l0[0], l0[1])
l = jnp.linalg.norm(dx, axis=0)
if prefer_orig_order:
f3 = (
-k2
* (1.0 - l0_diag * jnp.array([jnp.sign(dx[0]), jnp.sign(dx[1])]) / l)
* dx
)
else:
f3 = -k2 * (1.0 - l0_diag / l) * dx
f3 = jnp.nan_to_num(f3, copy=False, posinf=0.0, neginf=0.0)
f3p = jnp.pad(f3, ((0, 0), (0, 0), (1, 0), (1, 0)))
f3n = jnp.pad(f3, ((0, 0), (0, 0), (0, 1), (0, 1)))
# / springs
dx = x[:, :, 1:, :-1] - x[:, :, :-1, 1:] + _xy_vec(-l0[0], l0[1])
l = jnp.linalg.norm(dx, axis=0)
if prefer_orig_order:
f4 = (
-k2
* (1.0 - l0_diag * jnp.array([-jnp.sign(dx[0]), jnp.sign(dx[1])]) / l)
* dx
)
else:
f4 = -k2 * (1.0 - l0_diag / l) * dx
f4 = jnp.nan_to_num(f4, copy=False, posinf=0.0, neginf=0.0)
f4p = jnp.pad(f4, ((0, 0), (0, 0), (1, 0), (0, 1)))
f4n = jnp.pad(f4, ((0, 0), (0, 0), (0, 1), (1, 0)))
return f1p + f2p + f3p + f4p - f1n - f2n - f3n - f4n
MESH_LINK_DIRECTIONS = ( # xyz
# 6 nearest neighbors
(1, 0, 0),
(0, 1, 0),
(0, 0, 1),
# 12 next-nearest neighbors
(1, 1, 0),
(-1, 1, 0),
(1, 0, 1),
(-1, 0, 1),
(0, 1, 1),
(0, -1, 1),
# 8 next-next-nearest neighors
(1, 1, 1),
(1, 1, -1),
(1, -1, 1),
(-1, 1, 1),
)
def elastic_mesh_3d(
x: jnp.ndarray,
k: float,
stride: float | Sequence[float],
prefer_orig_order: bool = False,
links=MESH_LINK_DIRECTIONS,
) -> jnp.ndarray:
"""Computes internal forces on the nodes of a 3d spring mesh.
Args:
x: [3, [batch..], z, y, x] array of mesh node positions, in relative format
k: spring constant for springs along the x direction; will be scaled
according to `stride` for all other springs to maintain constant
elasticity
stride: XYZ stride of the spring mesh grid
prefer_orig_order: whether to change the force formulation so that the
original relative spatial ordering of the nodes is energetically preferred
links: sequence of XYZ tuples indcating node links to consider, relative to
the node at (0, 0, 0); valid component values are {-1, 0, 1}
Returns:
[3, z, y, x] array of forces
"""
assert x.shape[0] == 3
if not isinstance(stride, collections.abc.Sequence):
stride = (stride,) * 3
stride = np.array(stride)
f_tot = None
num_non_spatial = x.ndim - 3
for direction in links:
# Select everything in non-spatial dimensions.
sel1 = [np.s_[:]] * num_non_spatial
sel2 = list(sel1)
# No padding for non-spatial dimensions.
pad_neg = [(0, 0)] * num_non_spatial
pad_pos = list(pad_neg)
for dim in direction[::-1]: # zyx
if dim == -1:
sel1.append(np.s_[:-1])
sel2.append(np.s_[1:])
pad_pos.append((0, 1))
pad_neg.append((1, 0))
elif dim == 1:
sel1.append(np.s_[1:])
sel2.append(np.s_[:-1])
pad_pos.append((1, 0))
pad_neg.append((0, 1))
elif dim == 0:
sel1.append(np.s_[:])
sel2.append(np.s_[:])
pad_pos.append((0, 0))
pad_neg.append((0, 0))
else:
raise ValueError('Only |v| <= 1 values supported within links.')
l0 = np.array(stride * direction, dtype=np.float32).reshape(
[3] + [1] * (x.ndim - 1)
)
dx = x[tuple(sel1)] - x[tuple(sel2)] + l0
l0 = np.linalg.norm(l0)
l = jnp.linalg.norm(dx, axis=0)
# We want to maintain constant elasticity E and E ~ k⋅l0.
# k is specified for the horizontal direction, and so l0 for it is
# stride_x.
k_eff = k * stride[0] / l0
if prefer_orig_order:
ones = jnp.ones_like(dx[0])
factor = jnp.array([
direction[0] * jnp.sign(dx[0]) if direction[0] != 0 else ones,
direction[1] * jnp.sign(dx[1]) if direction[1] != 0 else ones,
direction[2] * jnp.sign(dx[2]) if direction[2] != 0 else ones,
])
f = -k_eff * (1.0 - l0 * factor / l) * dx
else:
f = -k_eff * (1.0 - l0 / l) * dx
f = jnp.nan_to_num(f, copy=False, posinf=0.0, neginf=0.0)
fp = jnp.pad(f, pad_pos)
if f_tot is None:
f_tot = fp
else:
f_tot += fp
fn = jnp.pad(f, pad_neg)
f_tot -= fn
return f_tot # pytype: disable=bad-return-type # jax-ndarray
@dataclasses.dataclass(frozen=True)
class IntegrationConfig(dataclasses_json.DataClassJsonMixin):
"""Parameters for numerical integration of the mesh state."""
dt: float # time step size
gamma: float # damping constant
k0: float # spring constant for inter-section springs
k: float # spring constant for intra-section springs
# distance between nearest neighbors of the point grid
stride: tuple[float, float] | tuple[float, float, float]
num_iters: int # number of time steps to execute at once
max_iters: int # upper bound for simulation time
# The simulation terminates when the velocity of all nodes is below this
# value. If FIRE is used, the force cap also has to have reached 'final_cap'
# as specified below in order for the simulation to stop.
stop_v_max: float
# Whether to use the Fast Inertial Relaxation Engine (FIRE).
fire: bool = True
# FIRE parameters.
f_alpha: float = 0.99
f_inc: float = 1.1
f_dec: float = 0.5
alpha: float = 0.1
n_min: int = 5 # Min. number of steps after which to increase step size.
dt_max: float = 10.0 # Max time step size, in units of 'dt'.
# Initial and final values of the inter-section force component magnitude cap.
# start_cap != final_cap is only supported when using FIRE.
start_cap: float = 1e6
final_cap: float = 1e6
# Upscaling factor for the force cap (should be >1).
cap_scale: float = 1.1
# Number of steps between force cap upscalings. The cap is only updated
# when power has remained positive for this number of steps. The cap will
# also be increased once the velocity of all nodes is below 'stop_v_max',
# regardless of the power history.
cap_upscale_every: int = 100
# Whether to modify the in-plane spring force formulation to energetically
# favor the original relative spatial node ordering. This helps prevent
# mesh folds, but adds some computational overhead.
prefer_orig_order: bool = False
# If true, removes global drift after every step -- subtracts global mean
# speed from every node, and translates all nodes so that their mean global
# position is at 0.
remove_drift: bool = False
# Required to ensure that stride is a tuple, which is required to be able to
# hash the config before passing to JAX.
def __post_init__(self):
object.__setattr__(self, 'stride', tuple(self.stride))
# Workaround for b/357594003
jax.tree_util.register_dataclass(
IntegrationConfig,
data_fields=[
'alpha',
'cap_scale',
'cap_upscale_every',
'dt_max',
'dt',
'f_alpha',
'f_dec',
'f_inc',
'final_cap',
'fire',
'gamma',
'k',
'k0',
'max_iters',
'n_min',
'num_iters',
'prefer_orig_order',
'remove_drift',
'start_cap',
'stop_v_max',
'stride',
],
meta_fields=[],
)
@functools.partial(jax.jit, static_argnames=['config', 'mesh_force', 'prev_fn'])
def velocity_verlet(
x: jnp.ndarray,
v: jnp.ndarray,
prev: jnp.ndarray | None,
config: IntegrationConfig,
force_cap: float,
fire_dt: float | None = None,
fire_alpha: float | None = None,
mesh_force=inplane_force,
prev_fn=None,
):
"""Executes a sequence of (damped) velocity Verlet steps.
Optionally uses the FIRE integrator. Disabling or reducing
damping ('gamma') is recommended when using FIRE.
As of Apr 2021, this runs at 1.3 GLUPS - 2.3 GLUPS. The latter value
is attained for specific sizes of the arrays (e.g. 1024^2, 2048^2).
LUPS = Lattice (site) Updates Per Second
References:
* derivation of velocity Verlet for damped systems:
http://physics.bu.edu/py502/lectures3/cmotion.pdf
* FIRE:
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1016/j.commatsci.2018.09.049
N below indicates the number of degrees of freedom of every node. Valid values
are 2 (in-plane) or 3 (full 3d). The order of vector components indexed by the
first dimension is XY[Z].
Args:
x: [N, z, y, x] positions
v: [N, z, y, x] velocities
prev: [N, z, y, x] positions against which to compute 0-length spring forces
config: integration parameters
force_cap: max. magnitude of an inter-section force component
fire_dt: initial step size when using the FIRE solver; config.dt is used
when None
fire_alpha: initial value of alpha when using the FIRE solver; config.alpha
is used when None
mesh_force: callable with the signature of `inplane_force` returning a field
representing internal mesh forces
prev_fn: callable taking the 'x' mesh array and returning the 'prev' array
Returns:
updated mesh state; this is a tuple of:
position, velocity, acceleration, (dt, alpha, steps since power < 0,
inter-section force cap)
The latter 4 entries are only present when using FIRE.
"""
# The code assumes uniform masses set to unity, so force=acceleration.
def _force(x, prev, cap):
a = mesh_force(x, config.k, config.stride, config.prefer_orig_order)
if prev_fn is not None:
prev = prev_fn(x)
if prev is not None:
a += jnp.clip(-config.k0 * jnp.nan_to_num(x - prev), -cap, cap)
return a
def vv_step(t, state, dt, force_cap):
del t
x, v, a = state
x += dt * v + 0.5 * dt**2 * a
a_prev = a
a = _force(x, prev, force_cap)
fact0 = 1.0 / (1.0 + 0.5 * dt * config.gamma)
fact1 = 1.0 - 0.5 * dt * config.gamma
v = fact0 * (v * fact1 + 0.5 * dt * (a_prev + a))
return x, v, a
def fire_step(t, state):
x, v, a, dt, alpha, n_pos, cap = state
x, v, a = vv_step(t, (x, v, a), dt, cap)
a_norm = jnp.linalg.norm(a, axis=0, keepdims=True) + 1e-6
v_norm = jnp.linalg.norm(v, axis=0, keepdims=True)
power = jnp.vdot(a, v)
v += alpha * (a / a_norm * v_norm - v)
# Number of steps since power was negative.
n_pos = jnp.where(power >= 0, n_pos + 1, 0)
# FIRE adaptive time stepping scheme:
# - when power < 0, reduce dt, reset alpha and set v = 0.
# - when power > 0 for n_min steps, increase dt and alpha.
dt = jnp.where(
power >= 0,
jnp.where(
n_pos > config.n_min,
jnp.minimum(dt * config.f_inc, config.dt_max * config.dt),
dt,
),
dt * config.f_dec,
)
alpha = jnp.where(
power >= 0,
jnp.where(n_pos > config.n_min, alpha * config.f_alpha, alpha),
config.alpha,
)
cap = jnp.minimum(
jnp.where(
power >= 0,
jnp.where(
(n_pos > 0) & ((n_pos % config.cap_upscale_every) == 0),
config.cap_scale * cap,
cap,
),
cap,
),
config.final_cap,
)
v *= power >= 0
if config.remove_drift:
# Remove any global drift and recenter the nodes.
x -= jnp.mean(x, axis=(1, 2, 3), keepdims=True)
v -= jnp.mean(v, axis=(1, 2, 3), keepdims=True)
return x, v, a, dt, alpha, n_pos, cap
a = _force(x, prev, force_cap)
if config.fire:
if fire_alpha is None:
fire_alpha = config.alpha
if fire_dt is None:
fire_dt = config.dt
return jax.lax.fori_loop(
0,
config.num_iters,
fire_step,
(x, v, a, fire_dt, fire_alpha, 0, force_cap),
)
else:
return jax.lax.fori_loop(
0,
config.num_iters,
functools.partial(vv_step, dt=config.dt, force_cap=force_cap),
(x, v, a),
)
def relax_mesh(
x: jnp.ndarray,
prev: jnp.ndarray | None,
config: IntegrationConfig,
mesh_force=inplane_force,
prev_fn=None,
) -> tuple[jnp.ndarray, list[float], int]:
"""Simulates mesh relaxation.
Args:
x: [2, z, y, x] array of mesh node positions
prev: optional [2, z, y, x] array against which to compute the force due to
0-length springs
config: simulation parameters
mesh_force: callable with the signature of `inplane_force` returning a field
representing internal mesh forces
prev_fn: callable taking the 'x' mesh array and returning the 'prev' array
Returns:
tuple of:
[2, z, x, y] array of updated mesh positions
list of kinetic energy history
number of simulation steps executed
"""
t = 0
v = jnp.zeros_like(x)
dt = config.dt
alpha = config.alpha
e_kin = []
cap = config.start_cap
if config.start_cap != config.final_cap:
if not config.fire:
raise NotImplementedError(
'Adaptive force capping is only supported with FIRE.'
)
if config.cap_scale <= 1:
raise ValueError(
'The scaling factor for the force cap has to be larger '
'than 1 when the initial and final cap are different.'
)
if prev is not None and prev_fn is not None:
raise ValueError('Only one of: "prev" and "prev_fn" can be specified.')
while t < config.max_iters:
state = velocity_verlet(
x,
v,
prev,
config,
fire_dt=dt,
fire_alpha=alpha,
force_cap=cap,
mesh_force=mesh_force,
prev_fn=prev_fn,
)
t += config.num_iters
x, v = state[:2]
v_mag = jnp.linalg.norm(v, axis=0)
e_kin.append(float(jnp.sum(v_mag**2)))
v_max = jnp.max(v_mag)
if config.fire:
dt, alpha, n_pos, cap = state[-4:]
logging.info(
't=%r: dt=%f, alpha=%f, n_pos=%d, cap=%f, v_max=%f, e_kin=%f',
t,
dt,
alpha,
n_pos,
cap,
v_max,
e_kin[-1],
)
if v_max < config.stop_v_max:
if cap >= config.final_cap:
break
# Increase cap to ensure progress towards the termination condition.
cap = min(cap * config.cap_scale, config.final_cap)
return x, e_kin, t