-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathheader.go
202 lines (183 loc) · 6.02 KB
/
header.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package rpmpack
import (
"bytes"
"encoding/binary"
"fmt"
"sort"
)
const (
signatures = 0x3e
immutable = 0x3f
typeInt16 = 0x03
typeInt32 = 0x04
typeString = 0x06
typeBinary = 0x07
typeStringArray = 0x08
)
// Only integer types are aligned. This is not just an optimization - some versions
// of rpm fail when integers are not aligned. Other versions fail when non-integers are aligned.
var boundaries = map[int]int{
typeInt16: 2,
typeInt32: 4,
}
type IndexEntry struct {
rpmtype, count int
data []byte
}
func (e IndexEntry) indexBytes(tag, contentOffset int) []byte {
b := &bytes.Buffer{}
if err := binary.Write(b, binary.BigEndian, []int32{int32(tag), int32(e.rpmtype), int32(contentOffset), int32(e.count)}); err != nil {
// binary.Write can fail if the underlying Write fails, or the types are invalid.
// bytes.Buffer's write never error out, it can only panic with OOM.
panic(err)
}
return b.Bytes()
}
func intEntry(rpmtype, size int, value interface{}) IndexEntry {
b := &bytes.Buffer{}
if err := binary.Write(b, binary.BigEndian, value); err != nil {
// binary.Write can fail if the underlying Write fails, or the types are invalid.
// bytes.Buffer's write never error out, it can only panic with OOM.
panic(err)
}
return IndexEntry{rpmtype, size, b.Bytes()}
}
func EntryInt16(value []int16) IndexEntry {
return intEntry(typeInt16, len(value), value)
}
func EntryUint16(value []uint16) IndexEntry {
return intEntry(typeInt16, len(value), value)
}
func EntryInt32(value []int32) IndexEntry {
return intEntry(typeInt32, len(value), value)
}
func EntryUint32(value []uint32) IndexEntry {
return intEntry(typeInt32, len(value), value)
}
func EntryString(value string) IndexEntry {
return IndexEntry{typeString, 1, append([]byte(value), byte(00))}
}
func EntryBytes(value []byte) IndexEntry {
return IndexEntry{typeBinary, len(value), value}
}
func EntryStringSlice(value []string) IndexEntry {
b := [][]byte{}
for _, v := range value {
b = append(b, []byte(v))
}
bb := append(bytes.Join(b, []byte{00}), byte(00))
return IndexEntry{typeStringArray, len(value), bb}
}
type index struct {
entries map[int]IndexEntry
h int
}
func newIndex(h int) *index {
return &index{entries: make(map[int]IndexEntry), h: h}
}
func (i *index) Add(tag int, e IndexEntry) {
i.entries[tag] = e
}
func (i *index) AddEntries(m map[int]IndexEntry) {
for t, e := range m {
i.Add(t, e)
}
}
func (i *index) sortedTags() []int {
t := []int{}
for k := range i.entries {
t = append(t, k)
}
sort.Ints(t)
return t
}
func pad(w *bytes.Buffer, rpmtype, offset int) {
// We need to align integer entries...
if b, ok := boundaries[rpmtype]; ok && offset%b != 0 {
if _, err := w.Write(make([]byte, b-offset%b)); err != nil {
// binary.Write can fail if the underlying Write fails, or the types are invalid.
// bytes.Buffer's write never error out, it can only panic with OOM.
panic(err)
}
}
}
// Bytes returns the bytes of the index.
func (i *index) Bytes() ([]byte, error) {
w := &bytes.Buffer{}
// Even the header has three parts: The lead, the index entries, and the entries.
// Because of alignment, we can only tell the actual size and offset after writing
// the entries.
entryData := &bytes.Buffer{}
tags := i.sortedTags()
offsets := make([]int, len(tags))
for ii, tag := range tags {
e := i.entries[tag]
pad(entryData, e.rpmtype, entryData.Len())
offsets[ii] = entryData.Len()
entryData.Write(e.data)
}
entryData.Write(i.eigenHeader().data)
// 4 magic and 4 reserved
w.Write([]byte{0x8e, 0xad, 0xe8, 0x01, 0, 0, 0, 0})
// 4 count and 4 size
// We add the pseudo-entry "eigenHeader" to count.
if err := binary.Write(w, binary.BigEndian, []int32{int32(len(i.entries)) + 1, int32(entryData.Len())}); err != nil {
return nil, fmt.Errorf("failed to write eigenHeader: %w", err)
}
// Write the eigenHeader index entry
w.Write(i.eigenHeader().indexBytes(i.h, entryData.Len()-0x10))
// Write all of the other index entries
for ii, tag := range tags {
e := i.entries[tag]
w.Write(e.indexBytes(tag, offsets[ii]))
}
w.Write(entryData.Bytes())
return w.Bytes(), nil
}
// the eigenHeader is a weird entry. Its index entry is sorted first, but its content
// is last. The content is a 16 byte index entry, which is almost the same as the index
// entry except for the offset. The offset here is ... minus the length of the index entry region.
// Which is always 0x10 * number of entries.
// I kid you not.
func (i *index) eigenHeader() IndexEntry {
b := &bytes.Buffer{}
if err := binary.Write(b, binary.BigEndian, []int32{int32(i.h), int32(typeBinary), -int32(0x10 * (len(i.entries) + 1)), int32(0x10)}); err != nil {
// binary.Write can fail if the underlying Write fails, or the types are invalid.
// bytes.Buffer's write never error out, it can only panic with OOM.
panic(err)
}
return EntryBytes(b.Bytes())
}
func lead(name, fullVersion string) []byte {
// RPM format = 0xedabeedb
// version 3.0 = 0x0300
// type binary = 0x0000
// machine archnum (i386?) = 0x0001
// name ( 66 bytes, with null termination)
// osnum (linux?) = 0x0001
// sig type (header-style) = 0x0005
// reserved 16 bytes of 0x00
n := []byte(fmt.Sprintf("%s-%s", name, fullVersion))
if len(n) > 65 {
n = n[:65]
}
n = append(n, make([]byte, 66-len(n))...)
b := []byte{0xed, 0xab, 0xee, 0xdb, 0x03, 0x00, 0x00, 0x00, 0x00, 0x01}
b = append(b, n...)
b = append(b, []byte{0x00, 0x01, 0x00, 0x05}...)
b = append(b, make([]byte, 16)...)
return b
}