diff --git a/src/types.d.ts b/src/types.d.ts index f1e2ac73..f2de0b87 100644 --- a/src/types.d.ts +++ b/src/types.d.ts @@ -13,7 +13,7 @@ // limitations under the License. /** - * Discovery Revision: 20240905 + * Discovery Revision: 20240919 */ /** @@ -3400,7 +3400,8 @@ declare namespace bigquery { | 'RANDOM_FOREST_CLASSIFIER' | 'TENSORFLOW_LITE' | 'ONNX' - | 'TRANSFORM_ONLY'; + | 'TRANSFORM_ONLY' + | 'CONTRIBUTION_ANALYSIS'; /** * Output only. Training type of the job. */ @@ -3503,7 +3504,8 @@ declare namespace bigquery { | 'RANDOM_FOREST_CLASSIFIER' | 'TENSORFLOW_LITE' | 'ONNX' - | 'TRANSFORM_ONLY'; + | 'TRANSFORM_ONLY' + | 'CONTRIBUTION_ANALYSIS'; /** * Output only. For single-objective [hyperparameter tuning](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it only contains the best trial. For multi-objective [hyperparameter tuning](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it contains all Pareto optimal trials sorted by trial_id. */ @@ -5511,6 +5513,10 @@ declare namespace bigquery { * Subsample ratio of columns when constructing each tree for boosted tree models. */ colsampleBytree?: number; + /** + * The contribution metric. Applies to contribution analysis models. Allowed formats supported are for summable and summable ratio contribution metrics. These include expressions such as "SUM(x)" or "SUM(x)/SUM(y)", where x and y are column names from the base table. + */ + contributionMetric?: string; /** * Type of normalization algorithm for boosted tree models using dart booster. */ @@ -5550,6 +5556,10 @@ declare namespace bigquery { * If true, perform decompose time series and save the results. */ decomposeTimeSeries?: boolean; + /** + * Optional. Names of the columns to slice on. Applies to contribution analysis models. + */ + dimensionIdColumns?: Array; /** * Distance type for clustering models. */ @@ -5771,6 +5781,10 @@ declare namespace bigquery { * Number of integral steps for the integrated gradients explain method. */ integratedGradientsNumSteps?: string; + /** + * Name of the column used to determine the rows corresponding to control and test. Applies to contribution analysis models. + */ + isTestColumn?: string; /** * Item column specified for matrix factorization models. */ @@ -5834,6 +5848,10 @@ declare namespace bigquery { * Maximum depth of a tree for boosted tree models. */ maxTreeDepth?: string; + /** + * The apriori support minimum. Applies to contribution analysis models. + */ + minAprioriSupport?: number; /** * When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms. */