# Run the main file (at the root of the project)
python main_molecules_graph_regression.py --dataset ZINC --config 'configs/molecules_graph_regression_GatedGCN_ZINC_100k.json' # for CPU
python main_molecules_graph_regression.py --dataset ZINC --gpu_id 0 --config 'configs/molecules_graph_regression_GatedGCN_ZINC_100k.json' # for GPU
The training and network parameters for each dataset and network is stored in a json file in the configs/
directory.
# Run the notebook file (at the root of the project)
conda activate benchmark_gnn
jupyter notebook
Use main_molecules_graph_regression.ipynb
notebook to explore the code and do the training interactively.
Output results are located in the folder defined by the variable out_dir
in the corresponding config file (eg. configs/molecules_graph_regression_GatedGCN_ZINC_100k.json
file).
If out_dir = 'out/molecules_graph_regression/'
, then
- Go to
out/molecules_graph_regression/results
to view all result text files. - Directory
out/molecules_graph_regression/checkpoints
contains model checkpoints.
- Go to the logs directory, i.e.
out/molecules_graph_regression/logs/
. - Run the commands
source activate benchmark_gnn
tensorboard --logdir='./' --port 6006
- Open
http://localhost:6006
in your browser. Note that the port information (here 6006 but it may change) appears on the terminal immediately after starting tensorboard.
- Move this script to the root of the repository, i.e. benchmarking-gnns/.
- Run the script
bash script_tensorboard.sh
. - On your local machine, run the command
ssh -N -f -L localhost:6006:localhost:6006 [email protected]
. - Open
http://localhost:6006
in your browser. Note that[email protected]
corresponds to your user login and the IP of the remote machine.
# At the root of the project
bash scripts/SuperPixels/script_main_superpixels_graph_classification_MNIST_100k.sh # run MNIST dataset for 100k params
bash scripts/SuperPixels/script_main_superpixels_graph_classification_MNIST_500k.sh # run MNIST dataset for 500k params; WL-GNNs
bash scripts/SuperPixels/script_main_superpixels_graph_classification_CIFAR10_100k.sh # run CIFAR10 dataset for 100k params
bash scripts/SuperPixels/script_main_superpixels_graph_classification_CIFAR10_500k.sh # run CIFAR10 dataset for 500k params; WL-GNNs
bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_100k.sh # run ZINC dataset for 100k params
bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_500k.sh # run ZINC dataset for 500k params
bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_PE_GatedGCN_500k.sh # run ZINC dataset with PE for GatedGCN
bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_100k.sh # run AQSOL dataset for 100k params
bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_500k.sh # run AQSOL dataset for 500k params
bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_PE_GatedGCN_500k.sh # run AQSOL dataset with PE for GatedGCN
bash scripts/WikiCS/script_main_WikiCS_node_classification_100k.sh # run WikiCS dataset for 100k params
bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_100k.sh # run PATTERN dataset for 100k params
bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_500k.sh # run PATTERN dataset for 500k params
bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_PE_GatedGCN_500k.sh # run PATTERN dataset with PE for GatedGCN
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_100k.sh # run CLUSTER dataset for 100k params
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_500k.sh # run CLUSTER dataset for 500k params
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_PE_GatedGCN_500k.sh # run CLUSTER dataset with PE for GatedGCN
bash scripts/TSP/script_main_TSP_edge_classification_100k.sh # run TSP dataset for 100k params
bash scripts/TSP/script_main_TSP_edge_classification_edge_feature_analysis.sh # run TSP dataset for edge feature analysis
bash scripts/COLLAB/script_main_COLLAB_edge_classification_40k.sh # run OGBL-COLLAB dataset for 40k params
bash scripts/COLLAB/script_main_COLLAB_edge_classification_edge_feature_analysis.sh # run OGBL-COLLAB dataset for edge feature analysis
bash scripts/COLLAB/script_main_COLLAB_edge_classification_PE_GatedGCN_40k.sh # run OGBL-COLLAB dataset with PE for GatedGCN
bash scripts/CSL/script_main_CSL_graph_classification_20_seeds.sh # run CSL dataset without node features on 20 seeds
bash scripts/CSL/script_main_CSL_graph_classification_PE_20_seeds.sh # run CSL dataset with PE on 20 seeds
bash scripts/GraphTheoryProp/script_main_GraphTheoryProp_multitask_100k.sh # run GraphTheoryProp dataset for 100k params
bash scripts/CYCLES/script_main_CYCLES_graph_classification_all.sh # run CYCLES dataset for 100k params
bash scripts/TU/script_main_TUs_graph_classification_100k_seed1.sh # run TU datasets for 100k params on seed1
bash scripts/TU/script_main_TUs_graph_classification_100k_seed2.sh # run TU datasets for 100k params on seed2
Scripts are located at the scripts/
directory of the repository.
After running a script, statistics (mean and standard variation) can be generated from a notebook. For example, after running the script scripts/ZINC/script_main_molecules_graph_regression_ZINC_100k.sh
, go to the results folder out/molecules_graph_regression/results/
, and run the notebook scripts/StatisticalResults/generate_statistics_molecules_graph_regression_ZINC_100k.ipynb
to generate the statistics.