Skip to content

Latest commit

 

History

History
executable file
·
147 lines (77 loc) · 6.22 KB

03_run_codes.md

File metadata and controls

executable file
·
147 lines (77 loc) · 6.22 KB

Reproducibility


1. Usage


1.1 In terminal

# Run the main file (at the root of the project)
python main_molecules_graph_regression.py --dataset ZINC --config 'configs/molecules_graph_regression_GatedGCN_ZINC_100k.json' # for CPU
python main_molecules_graph_regression.py --dataset ZINC --gpu_id 0 --config 'configs/molecules_graph_regression_GatedGCN_ZINC_100k.json' # for GPU

The training and network parameters for each dataset and network is stored in a json file in the configs/ directory.


1.2 In jupyter notebook

# Run the notebook file (at the root of the project)
conda activate benchmark_gnn 
jupyter notebook

Use main_molecules_graph_regression.ipynb notebook to explore the code and do the training interactively.


2. Output, checkpoints and visualizations

Output results are located in the folder defined by the variable out_dir in the corresponding config file (eg. configs/molecules_graph_regression_GatedGCN_ZINC_100k.json file).

If out_dir = 'out/molecules_graph_regression/', then

2.1 To see checkpoints and results

  1. Go toout/molecules_graph_regression/results to view all result text files.
  2. Directory out/molecules_graph_regression/checkpoints contains model checkpoints.

2.2 To see the training logs in Tensorboard on local machine

  1. Go to the logs directory, i.e. out/molecules_graph_regression/logs/.
  2. Run the commands
source activate benchmark_gnn
tensorboard --logdir='./' --port 6006
  1. Open http://localhost:6006 in your browser. Note that the port information (here 6006 but it may change) appears on the terminal immediately after starting tensorboard.

2.3 To see the training logs in Tensorboard on remote machine

  1. Move this script to the root of the repository, i.e. benchmarking-gnns/.
  2. Run the script bash script_tensorboard.sh.
  3. On your local machine, run the command ssh -N -f -L localhost:6006:localhost:6006 [email protected].
  4. Open http://localhost:6006 in your browser. Note that [email protected] corresponds to your user login and the IP of the remote machine.

3. Reproduce results (4 runs on all, except CSL and TUs)

# At the root of the project 
bash scripts/SuperPixels/script_main_superpixels_graph_classification_MNIST_100k.sh # run MNIST dataset for 100k params
bash scripts/SuperPixels/script_main_superpixels_graph_classification_MNIST_500k.sh # run MNIST dataset for 500k params; WL-GNNs
bash scripts/SuperPixels/script_main_superpixels_graph_classification_CIFAR10_100k.sh # run CIFAR10 dataset for 100k params
bash scripts/SuperPixels/script_main_superpixels_graph_classification_CIFAR10_500k.sh # run CIFAR10 dataset for 500k params; WL-GNNs

bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_100k.sh # run ZINC dataset for 100k params
bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_500k.sh # run ZINC dataset for 500k params
bash scripts/ZINC/script_main_molecules_graph_regression_ZINC_PE_GatedGCN_500k.sh # run ZINC dataset with PE for GatedGCN

bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_100k.sh # run AQSOL dataset for 100k params
bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_500k.sh # run AQSOL dataset for 500k params
bash scripts/AQSOL/script_main_molecules_graph_regression_AQSOL_PE_GatedGCN_500k.sh # run AQSOL dataset with PE for GatedGCN

bash scripts/WikiCS/script_main_WikiCS_node_classification_100k.sh # run WikiCS dataset for 100k params

bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_100k.sh # run PATTERN dataset for 100k params
bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_500k.sh # run PATTERN dataset for 500k params
bash scripts/SBMs/script_main_SBMs_node_classification_PATTERN_PE_GatedGCN_500k.sh # run PATTERN dataset with PE for GatedGCN
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_100k.sh # run CLUSTER dataset for 100k params
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_500k.sh # run CLUSTER dataset for 500k params
bash scripts/SBMs/script_main_SBMs_node_classification_CLUSTER_PE_GatedGCN_500k.sh # run CLUSTER dataset with PE for GatedGCN

bash scripts/TSP/script_main_TSP_edge_classification_100k.sh # run TSP dataset for 100k params
bash scripts/TSP/script_main_TSP_edge_classification_edge_feature_analysis.sh # run TSP dataset for edge feature analysis 

bash scripts/COLLAB/script_main_COLLAB_edge_classification_40k.sh # run OGBL-COLLAB dataset for 40k params
bash scripts/COLLAB/script_main_COLLAB_edge_classification_edge_feature_analysis.sh # run OGBL-COLLAB dataset for edge feature analysis 
bash scripts/COLLAB/script_main_COLLAB_edge_classification_PE_GatedGCN_40k.sh # run OGBL-COLLAB dataset with PE for GatedGCN

bash scripts/CSL/script_main_CSL_graph_classification_20_seeds.sh # run CSL dataset without node features on 20 seeds
bash scripts/CSL/script_main_CSL_graph_classification_PE_20_seeds.sh # run CSL dataset with PE on 20 seeds

bash scripts/GraphTheoryProp/script_main_GraphTheoryProp_multitask_100k.sh # run GraphTheoryProp dataset for 100k params

bash scripts/CYCLES/script_main_CYCLES_graph_classification_all.sh # run CYCLES dataset for 100k params

bash scripts/TU/script_main_TUs_graph_classification_100k_seed1.sh # run TU datasets for 100k params on seed1
bash scripts/TU/script_main_TUs_graph_classification_100k_seed2.sh # run TU datasets for 100k params on seed2

Scripts are located at the scripts/ directory of the repository.


4. Generate statistics obtained over mulitple runs (except CSL and TUs)

After running a script, statistics (mean and standard variation) can be generated from a notebook. For example, after running the script scripts/ZINC/script_main_molecules_graph_regression_ZINC_100k.sh, go to the results folder out/molecules_graph_regression/results/, and run the notebook scripts/StatisticalResults/generate_statistics_molecules_graph_regression_ZINC_100k.ipynb to generate the statistics.