Skip to content

Releases: great-expectations/great_expectations

v0.5.1

30 Apr 18:22
Compare
Choose a tag to compare
  • Fix issue where no result_format available for expect_column_values_to_be_null caused error
  • Use vectorized computation in pandas (#443, #445; thanks @RoyalTS)

v0.5.0

25 Apr 14:06
Compare
Choose a tag to compare
  • Restructured class hierarchy to have a more generic DataAsset parent that maintains expectation logic separate from the tabular organization of Dataset expectations
  • Added new FileDataAsset and associated expectations (#416 thanks @anhollis)
  • Added support for date/datetime type columns in some SQLAlchemy expectations (#413)
  • Added support for a multicolumn expectation, expect multicolumn values to be unique (#408)
  • Optimization: You can now disable partial_unexpected_counts by setting the partial_unexpected_count value to 0 in the result_format argument, and we do not compute it when it would not be returned. (#431, thanks @eugmandel)
  • Fix: Correct error in unexpected_percent computations for sqlalchemy when unexpected values exceed limit (#424)
  • Fix: Pass meta object to expectation result (#415, thanks @jseeman)
  • Add support for multicolumn expectations, with expect_multicolumn_values_to_be_unique as an example (#406)
  • Add dataset class to from_pandas to simplify using custom datasets (#404, thanks @jtilly)
  • Add schema support for sqlalchemy data context (#410, thanks @rahulj51)
  • Minor documentation, warning, and testing improvements (thanks @zdog).

v0.4.5

19 Dec 23:57
Compare
Choose a tag to compare
  • Add a new autoinspect API and remove default expectations.
  • Improve details for expect_table_columns_to_match_ordered_list (#379, thanks @rlshuhart)
  • Linting fixes (thanks @elsander)
  • Add support for dataset_class in from_pandas (thanks @jtilly)
  • Improve redshift compatibility by correcting faulty isnull operator (thanks @avanderm)
  • Adjust partitions to use tail_weight to improve JSON compatibility and
    support special cases of KL Divergence (thanks @anhollis)
  • Enable custom_sql datasets for databases with multiple schemas, by
    adding a fallback for column reflection (#387, thanks @elsander)
  • Remove IF NOT EXISTS check for custom sql temporary tables, for
    Redshift compatibility (#372, thanks @elsander)
  • Allow users to pass args/kwargs for engine creation in
    SqlAlchemyDataContext (#369, thanks @elsander)
  • Add support for custom schema in SqlAlchemyDataset (#370, thanks @elsander)
  • Use getfullargspec to avoid deprecation warnings.
  • Add expect_column_values_to_be_unique to SqlAlchemyDataset
  • Fix map expectations for categorical columns (thanks @eugmandel)
  • Improve internal testing suite (thanks @anhollis and @ccnobbli)
  • Consistently use value_set instead of mixing value_set and values_set (thanks @njsmith8)

v0.4.4

29 Aug 17:27
bbc6960
Compare
Choose a tag to compare
  • Improve CLI help and set CLI return value to the number of unmet expectations
  • Add error handling for empty columns to SqlAlchemyDataset, and associated tests
  • Fix broken support for older pandas versions (#346)
  • Fix pandas deepcopy issue (#342)

v0.4.3

12 Jul 20:05
7cb109d
Compare
Choose a tag to compare
  • Improve type lists in expect_column_type_to_be[_in_list] (thanks @smontanaro and @ccnobbli)
  • Update cli to use entry_points for conda compatibility, and add version option to cli
  • Remove extraneous development dependency to airflow
  • Address SQlAlchemy warnings in median computation
  • Improve glossary in documentation
  • Add 'statistics' section to validation report with overall validation results (thanks @sotte)
  • Add support for parameterized expectations
  • Improve support for custom expectations with better error messages (thanks @syk0saje)
  • Implement expect_column_value_lenghts_to_[be_between|equal] for SQAlchemy (thanks @ccnobbli)
  • Fix PandasDataset subclasses to inherit child class

v0.4.2

17 May 02:18
Compare
Choose a tag to compare
  • Fix bugs in expect_column_values_to_[not]_be_null: computing unexpected value percentages and handling all-null (thanks @ccnobbli)
  • Support mysql use of Decimal type (thanks @bouke-nederstigt)
  • Add new expectation expect_column_values_to_not_match_regex_list.
    • Change behavior of expect_column_values_to_match_regex_list to use python re.findall in PandasDataset, relaxing matching of individuals expressions to allow matches anywhere in the string.
  • Fix documentation errors and other small errors (thanks @roblim, @ccnobbli)

v0.4.1

24 Mar 18:18
64aaaf8
Compare
Choose a tag to compare

Corrects failure to include new data_context module in source distribution.

v0.4.0

23 Mar 19:28
5793dba
Compare
Choose a tag to compare

Welcome to Great Expectations version 0.4.0! Please note that this release includes several major breaking API changes. Please see the changelog below for more information!

v.0.4.0

  • Initial implementation of data context API and SqlAlchemyDataset including implementations of the following expectations:
    • expect_column_to_exist
    • expect_table_row_count_to_be
    • expect_table_row_count_to_be_between
    • expect_column_values_to_not_be_null
    • expect_column_values_to_be_null
    • expect_column_values_to_be_in_set
    • expect_column_values_to_be_between
    • expect_column_mean_to_be
    • expect_column_min_to_be
    • expect_column_max_to_be
    • expect_column_sum_to_be
    • expect_column_unique_value_count_to_be_between
    • expect_column_proportion_of_unique_values_to_be_between
  • Major refactor of output_format to new result_format parameter. See docs for full details.
    • exception_list and related uses of the term exception have been renamed to unexpected
    • the output formats are explicitly hierarchical now, with BOOLEAN_ONLY < BASIC < SUMMARY < COMPLETE. column_aggregate_expectations now return element count and related information included at the BASIC level or higher.
  • New expectation available for parameterized distributions--expect_column_parameterized_distribution_ks_test_p_value_to_be_greater_than (what a name! :) -- (thanks @ccnobbli)
  • ge.from_pandas() utility (thanks @schrockn)
  • Pandas operations on a PandasDataset now return another PandasDataset (thanks @dlwhite5)
  • expect_column_to_exist now takes a column_index parameter to specify column order (thanks @louispotok)
  • Top-level validate option (ge.validate())
  • ge.read_json() helper (thanks @rjurney)
  • Behind-the-scenes improvements to testing framework to ensure parity across data contexts.
  • Documentation improvements, bug-fixes, and internal api improvements

v0.3.2

08 Feb 16:21
Compare
Choose a tag to compare
Update changelog and versions

v0.3.0

22 Dec 17:18
4d7a13d
Compare
Choose a tag to compare

Version 0.3.0 of great expectations brings significant improvements to documentation and the distributional expectations API.