-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path093.summary-stats.Rmd
342 lines (267 loc) · 10.8 KB
/
093.summary-stats.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
---
title: "Summary statistics and missing data analysis"
output:
html_document:
theme: flatly
toc: true
toc_float: true
code_download: true
highlight: tango
knit: (function(inputFile, encoding) {
rmarkdown::render(inputFile, encoding = encoding, output_dir = "docs") })
---
```{r setup, include=FALSE}
library(tidyverse)
library(lubridate)
library(rnaturalearth)
library(wru)
source('utils/r-utils.R')
theme_set(theme_bw() + theme(legend.title = element_blank()))
```
## General data read-in
```{r}
load('Rdata/raws.Rdata')
```
## Honorees
- Number of honorees up until 2019: `r nrow(keynotes)`.
- Three types of honorees:
```{r}
keynotes %>%
pull(conference) %>%
table()
```
There are `r nrow(keynotes)` entries and `r keynotes %>% distinct(fore_name, last_name) %>% nrow()` unique names in the ISCB cohort.
Names sorted by the number of honors:
```{r}
keynotes %>%
count(fore_name, last_name) %>%
arrange(desc(n)) %>%
DT::datatable()
```
Number of keynote speakers/fellows across years:
```{r}
keynotes %>%
select(year, conference) %>%
count(year, conference) %>%
ggplot(aes(x = year(year), y = n, color = conference)) +
geom_point() +
geom_line(alpha = 0.5) +
coord_cartesian(ylim = c(0, 13)) +
scale_x_continuous(breaks = seq(1995, 2019, 5)) +
scale_y_continuous(breaks = seq(0, 14, 2)) +
scale_color_viridis_d() +
labs(x = 'Year', y = 'Number of keynote speakers/fellows')
```
## Authors
Total number of last authors: `r nrow(corr_authors)`.
10 journals with the most computational biology articles:
```{r}
corr_authors %>%
mutate(publication_date = ymd(publication_date, truncated = 2)) %>%
select(publication_date, journal) %>%
filter(journal %in% large_jours$journal) %>%
ggplot(aes(x = publication_date, fill = forcats::fct_infreq(journal))) +
geom_histogram(size = 0, bins = 27) +
scale_fill_brewer(palette = 'Set3') +
theme(legend.position = c(0.2, 0.7)) +
labs(x = NULL, y = NULL) +
scale_x_date(
labels = scales::date_format("%Y"),
breaks = as.Date(c('2000-01-01', '2010-01-01', '2019-01-01')),
limits = c(as.Date('1993-01-01'), as.Date('2019-12-31'))) +
# geom_text(data = jours, aes(x = x, y = y, label = label), color = 'grey10') +
NULL
```
```{r}
nucleic_acids <- corr_authors %>% filter(grepl('Nucleic Acids Res', journal))
table(nucleic_acids$journal)
```
```{r include = F, eval = F}
# How much did ISCB honorees publish in these journals as last authors?
n_pubs <- keynotes %>%
distinct(fore_name_simple, last_name_simple) %>%
# left_join(nat_to_reg, by = c('afflcountries' = 'country_name')) %>%
left_join(corr_authors, by = c('fore_name_simple', 'last_name_simple')) %>%
group_by(fore_name_simple, last_name_simple) %>%
summarise(num_pubs = sum(!is.na(pmid)), .groups = 'drop')
n_pubs$num_pubs %>% sum()
# n_pubs %>%
# ggplot() +
# geom_bar(aes(x = num_pubs))
```
## Gender analysis
```{r}
gender_df <- read_tsv('data/gender/genderize.tsv')
pubmed_gender_pmids <- corr_authors %>%
left_join(gender_df, by = 'fore_name_simple')
iscb_gender_df <- keynotes %>%
left_join(gender_df, by = 'fore_name_simple')
```
```{r}
pubmed_gender_pmids %>%
mutate(genderized = ifelse(is.na(probability_male), 'NOT genderized', 'Genderized')) %>%
ggplot(aes(year(year), fill = genderized)) +
geom_bar() +
scale_fill_viridis_d() +
theme(legend.position = c(0.2, 0.8)) +
ylab('Number of full names')
```
```{r}
gender_check <- pubmed_gender_pmids %>%
mutate(got_gender = case_when(
is.na(probability_male) ~ 'Gender not predicted',
TRUE ~ 'Gender predicted'))
pred_all <- pubmed_gender_pmids %>%
count(is.na(probability_male))
dash_df <- pubmed_gender_pmids %>%
filter(is.na(probability_male) & !is.na(fore_name_simple)) %>%
mutate(dashed_name = grepl('-', fore_name_simple)) %>%
count(dashed_name)
pred_before_2002 <- gender_check %>%
filter(year(year) < 2002) %>%
count(is.na(probability_male), is.na(fore_name_simple))
```
`r pubmed_gender_pmids %>% filter(is.na(fore_name)) %>% nrow()` last authors with empty fore name field (i.e., missing metadata).
`r pubmed_gender_pmids %>% filter(is.na(fore_name_simple)) %>% nrow()` authors with no `fore_name_simple`.
In total, `r pred_all[1, 'n']` authors had gender prediction and `r pred_all[2, 'n']` didn't.
`r pubmed_gender_pmids %>% filter(!is.na(fore_name)&is.na(fore_name_simple)) %>% nrow()` authors with fore name that is NA once simplified (i.e., initials only).
Among `r sum(dash_df$n)` authors with fore name but no predictions, ~ `r round(dash_df$n[1]/sum(dash_df$n)*100)`% has a dash.
Before 2002, `r pred_before_2002[1, 'n']` authors had gender predictions, `r pred_before_2002[2, 'n']` didn't have gender predictions because of these authors only have initials for fore names.
Mean probability of selecting Asian among these names:
```{r}
pubmed_gender_pmids %>%
filter(is.na(probability_male) & !is.na(fore_name_simple)) %>%
rename('surname' = last_name_simple) %>%
predict_race(surname.only = T, impute.missing = F) %>%
pull(pred.asi) %>%
mean(na.rm = T)
```
Honorees that didn't receive a gender prediction: `r iscb_gender_df %>% filter(is.na(probability_male)) %>% pull(full_name)`.
**In summary, the NA predictions mostly include initials only, hyphenated names and perhaps names with accent marks.**
## US race analysis
```{r warning=FALSE, message=FALSE}
pubmed_aff_pmids <- corr_authors %>%
tidyr::separate_rows(countries, sep = ',') %>%
filter(countries == 'US') # looking at only US affiliation
keynotes_us <- keynotes %>%
tidyr::separate_rows(afflcountries, sep = '\\|') %>%
filter(afflcountries == 'United States')
pubmed_race_pmids <- pubmed_aff_pmids %>%
rename('surname' = last_name_simple) %>%
predict_race(surname.only = T, impute.missing = F)
iscb_us_race <- keynotes_us %>%
rename('surname' = last_name_simple) %>%
predict_race(surname.only = T, impute.missing = F)
```
- Number of honorees affiliated with the US: `r nrow(keynotes_us)`.
- Number of last authors affiliated with the US: `r nrow(pubmed_aff_pmids)`.
- Number of authors with no race prediction: `r sum(is.na(pubmed_race_pmids$pred.whi))` (of which `r sum(is.na(pubmed_race_pmids$surname))` did not have a surname).
- Number of honorees with no race prediction: `r sum(is.na(iscb_us_race$pred.whi))` (of which `r sum(is.na(iscb_us_race$surname))` did not have a surname).
```{r}
pubmed_race_pmids %>%
mutate(race_pred = ifelse(is.na(pred.whi), 'Race NOT predicted', 'Race predicted')) %>%
ggplot(aes(year(year), fill = fct_rev(race_pred))) +
geom_bar() +
scale_fill_viridis_d() +
theme(legend.position = c(0.2, 0.8)) +
ylab('Number of full names')
```
## Name origin analysis
```{r}
region_levels <- paste(c('Celtic/English', 'European', 'East Asian', 'Hispanic', 'South Asian', 'Arabic', 'Hebrew', 'African', 'Nordic', 'Greek'), 'names')
pubmed_nat_pmids <- corr_authors %>%
left_join(nationalize_df, by = c('fore_name', 'last_name'))
pubmed_nat_df <- pubmed_nat_pmids %>%
group_by(pmid, journal, publication_date, year) %>%
summarise_at(vars(African:SouthAsian), mean, na.rm = T) %>%
ungroup()
iscb_nat_df <- keynotes %>%
left_join(nationalize_df, by = c('fore_name', 'last_name'))
```
```{r}
set.seed(0)
top_names <- map_dfc(
nationalize_df %>%
select(African:SouthAsian) %>%
colnames(),
function(x) {
nationalize_df %>%
filter((!!sym(x)) > 0.9) %>%
sample_n(6) %>%
select(full_name) %>%
rename(!!x := full_name)
})
top_names %>%
pivot_longer(everything(), names_to = 'region', values_to = 'names') %>%
recode_region() %>%
group_by(region) %>%
summarise(names = paste(names, collapse = ', '), .groups = 'drop') %>%
arrange(factor(region, levels = region_levels)) %>%
DT::datatable() %>%
# write_tsv('data/names/example_name_origin.tsv') %>%
{.}
pubmed_nat_pmids %>% count(!is.na(African), is.na(fore_name_simple.x))
```
`r iscb_nat_df %>% filter(is.na(African)) %>% nrow()` ISCB speakers did not have nationality predictions.
`r pubmed_nat_pmids %>% filter(is.na(African)) %>% nrow()` pubmed full names not nationalized.
`r pubmed_nat_pmids %>% filter(is.na(African)&is.na(fore_name_simple.x)) %>% nrow()` of these don't have fore_name_simple.
(See earlier conclusion in Gender analysis.)
```{r}
pubmed_nat_df %>%
mutate(nationalized = ifelse(is.na(African), 'NOT nationalized', 'Nationalized')) %>%
ggplot(aes(year(year), fill = nationalized)) +
geom_bar() +
scale_fill_viridis_d() +
theme(legend.position = c(0.2, 0.8)) +
ylab('Number of full names')
```
## Affiliation analysis
```{r}
corr_authors %>%
mutate(affi_country_found = ifelse(is.na(countries), 'Country NOT found', 'Country found')) %>%
ggplot(aes(year(year), fill = affi_country_found)) +
geom_bar(position = 'stack') +
scale_fill_viridis_d() +
theme(legend.position = c(0.2, 0.8)) +
ylab('Number of full names')
corr_authors %>%
ggplot(aes(x = adjusted_citations)) +
geom_density()
corr_authors %>%
mutate(affi_country_found = ifelse(
is.na(countries), 'Country NOT found', 'Country found'),
has_pmcid = ifelse(is.na(pmcid), 'No PMCID', 'Has PMCID')) %>%
count(affi_country_found, has_pmcid)
```
Due to the lack of metadata, our method couldn't extract countries for most articles before 2014.
Even though many of these articles have PMCIDs, the affiliations were not mapped to authors in PMC metadata and thus couldn't be parsed.
However, unlike the other analyses where we considered "year" as a covariate, we calculated the enrichment by gathering data from all the years together.
Therefore, we leave all the data in as is.
## US name origin analysis
```{r}
pubmed_nat_pmids <- corr_authors %>%
separate_rows(countries, sep = ',') %>%
filter(countries == 'US') %>%
left_join(nationalize_df, by = c('fore_name', 'last_name'))
pubmed_nat_df <- pubmed_nat_pmids %>%
group_by(pmid, journal, publication_date, year) %>%
summarise_at(vars(African:SouthAsian), mean, na.rm = T) %>%
ungroup()
iscb_nat_df <- keynotes %>%
separate_rows(afflcountries, sep = '\\|') %>%
filter(afflcountries == 'United States') %>%
left_join(nationalize_df, by = c('fore_name', 'last_name'))
```
`r iscb_nat_df %>% filter(is.na(African)) %>% nrow()` US-affiliated ISCB speakers did not have nationality predictions.
`pubmed_nat_pmids %>% filter(is.na(African)) %>% nrow()` US-affiliated authors did not have nationality predictions.
`r pubmed_nat_pmids %>% filter(is.na(African)&is.na(fore_name_simple.x)) %>% nrow()` of these don't have fore_name_simple.
(See earlier conclusion in Gender analysis.)
```{r}
pubmed_nat_df %>%
mutate(nationalized = ifelse(is.na(African), 'NOT nationalized', 'Nationalized')) %>%
ggplot(aes(year(year), fill = nationalized)) +
geom_bar() +
scale_fill_viridis_d() +
theme(legend.position = c(0.2, 0.8)) +
ylab('Number of US-affiliated full names')
```