-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathllama_test.py
44 lines (35 loc) · 1.29 KB
/
llama_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from vllm import LLM, SamplingParams
import time
from PIL import Image
def main():
llm = LLM(
#'/models/Llama-3.2-11B-Vision-Instruct-FP8-KV',
'/models/Llama-3.2-90B-Vision-Instruct',
tensor_parallel_size=4,
#quantization="fp8",
#enforce_eager=True,
#kv_cache_dtype="fp8",
)
batch_size = 1
max_tokens = 256
prompt = f"<|image|><|begin_of_text|>Describe image in two sentences"
sampling_params = SamplingParams(temperature=0,
top_p=1,
max_tokens=max_tokens)
start_time = time.perf_counter()
image = Image.open("/projects/image1.jpg") \
.convert("RGB")
inputs = {"prompt": prompt, "multi_modal_data": {"image": image}},
outs = llm.generate(inputs, sampling_params=sampling_params)
end_time = time.perf_counter()
elapsed_time = end_time - start_time
out_lengths = [len(x.token_ids) for out in outs for x in out.outputs]
num_tokens = sum(out_lengths)
print(
f"{num_tokens} tokens. {num_tokens / batch_size} on average. {num_tokens / elapsed_time:.2f} tokens/s. {elapsed_time} seconds"
)
for out in outs:
print("===========")
print(out.outputs[0].text)
if __name__ == "__main__":
main()