-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCMakeLists.txt
370 lines (317 loc) · 11.2 KB
/
CMakeLists.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
cmake_minimum_required(VERSION 3.26)
project(vllm_extensions LANGUAGES CXX)
# CUDA by default, can be overridden by using -DVLLM_TARGET_DEVICE=... (used by setup.py)
set(VLLM_TARGET_DEVICE "cuda" CACHE STRING "Target device backend for vLLM")
message(STATUS "Build type: ${CMAKE_BUILD_TYPE}")
message(STATUS "Target device: ${VLLM_TARGET_DEVICE}")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/utils.cmake)
# Suppress potential warnings about unused manually-specified variables
set(ignoreMe "${VLLM_PYTHON_PATH}")
#
# Supported python versions. These versions will be searched in order, the
# first match will be selected. These should be kept in sync with setup.py.
#
set(PYTHON_SUPPORTED_VERSIONS "3.8" "3.9" "3.10" "3.11" "3.12")
# Supported NVIDIA architectures.
set(CUDA_SUPPORTED_ARCHS "7.0;7.5;8.0;8.6;8.9;9.0")
# Supported AMD GPU architectures.
set(HIP_SUPPORTED_ARCHS "gfx906;gfx908;gfx90a;gfx940;gfx941;gfx942;gfx1030;gfx1100;gfx1101")
#
# Supported/expected torch versions for CUDA/ROCm.
#
# Currently, having an incorrect pytorch version results in a warning
# rather than an error.
#
# Note: the CUDA torch version is derived from pyproject.toml and various
# requirements.txt files and should be kept consistent. The ROCm torch
# versions are derived from Dockerfile.rocm
#
set(TORCH_SUPPORTED_VERSION_CUDA "2.4.0")
set(TORCH_SUPPORTED_VERSION_ROCM "2.5.0")
#
# Try to find python package with an executable that exactly matches
# `VLLM_PYTHON_EXECUTABLE` and is one of the supported versions.
#
if (VLLM_PYTHON_EXECUTABLE)
find_python_from_executable(${VLLM_PYTHON_EXECUTABLE} "${PYTHON_SUPPORTED_VERSIONS}")
else()
message(FATAL_ERROR
"Please set VLLM_PYTHON_EXECUTABLE to the path of the desired python version"
" before running cmake configure.")
endif()
#
# Update cmake's `CMAKE_PREFIX_PATH` with torch location.
#
append_cmake_prefix_path("torch" "torch.utils.cmake_prefix_path")
# Ensure the 'nvcc' command is in the PATH
find_program(NVCC_EXECUTABLE nvcc)
if (CUDA_FOUND AND NOT NVCC_EXECUTABLE)
message(FATAL_ERROR "nvcc not found")
endif()
#
# Import torch cmake configuration.
# Torch also imports CUDA (and partially HIP) languages with some customizations,
# so there is no need to do this explicitly with check_language/enable_language,
# etc.
#
find_package(Torch REQUIRED)
#
# Add the `default` target which detects which extensions should be
# built based on platform/architecture. This is the same logic that
# setup.py uses to select which extensions should be built and should
# be kept in sync.
#
# The `default` target makes direct use of cmake easier since knowledge
# of which extensions are supported has been factored in, e.g.
#
# mkdir build && cd build
# cmake -G Ninja -DVLLM_PYTHON_EXECUTABLE=`which python3` -DCMAKE_LIBRARY_OUTPUT_DIRECTORY=../vllm ..
# cmake --build . --target default
#
add_custom_target(default)
message(STATUS "Enabling core extension.")
# Define _core_C extension
# built for (almost) every target platform, (excludes TPU and Neuron)
set(VLLM_EXT_SRC
"csrc/core/torch_bindings.cpp")
define_gpu_extension_target(
_core_C
DESTINATION vllm
LANGUAGE CXX
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${CXX_COMPILE_FLAGS}
USE_SABI 3
WITH_SOABI)
add_dependencies(default _core_C)
#
# Forward the non-CUDA device extensions to external CMake scripts.
#
if (NOT VLLM_TARGET_DEVICE STREQUAL "cuda" AND
NOT VLLM_TARGET_DEVICE STREQUAL "rocm")
if (VLLM_TARGET_DEVICE STREQUAL "cpu")
include(${CMAKE_CURRENT_LIST_DIR}/cmake/cpu_extension.cmake)
else()
return()
endif()
return()
endif()
#
# Set up GPU language and check the torch version and warn if it isn't
# what is expected.
#
if (NOT HIP_FOUND AND CUDA_FOUND)
set(VLLM_GPU_LANG "CUDA")
if (NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_CUDA})
message(WARNING "Pytorch version ${TORCH_SUPPORTED_VERSION_CUDA} "
"expected for CUDA build, saw ${Torch_VERSION} instead.")
endif()
elseif(HIP_FOUND)
set(VLLM_GPU_LANG "HIP")
# Importing torch recognizes and sets up some HIP/ROCm configuration but does
# not let cmake recognize .hip files. In order to get cmake to understand the
# .hip extension automatically, HIP must be enabled explicitly.
enable_language(HIP)
# ROCm 5.X and 6.X
if (ROCM_VERSION_DEV_MAJOR GREATER_EQUAL 5 AND
NOT Torch_VERSION VERSION_EQUAL ${TORCH_SUPPORTED_VERSION_ROCM})
message(WARNING "Pytorch version >= ${TORCH_SUPPORTED_VERSION_ROCM} "
"expected for ROCm build, saw ${Torch_VERSION} instead.")
endif()
else()
message(FATAL_ERROR "Can't find CUDA or HIP installation.")
endif()
#
# Override the GPU architectures detected by cmake/torch and filter them by
# the supported versions for the current language.
# The final set of arches is stored in `VLLM_GPU_ARCHES`.
#
override_gpu_arches(VLLM_GPU_ARCHES
${VLLM_GPU_LANG}
"${${VLLM_GPU_LANG}_SUPPORTED_ARCHS}")
#
# Setting up debug flags for pleasant debug experience.
#
set(CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG "${CMAKE_${VLLM_GPU_LANG}_FLAGS_DEBUG} -O0 -ggdb3")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} -O0 -ggdb3")
#
# Query torch for additional GPU compilation flags for the given
# `VLLM_GPU_LANG`.
# The final set of arches is stored in `VLLM_GPU_FLAGS`.
#
get_torch_gpu_compiler_flags(VLLM_GPU_FLAGS ${VLLM_GPU_LANG})
#
# Set nvcc parallelism.
#
if(NVCC_THREADS AND VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_GPU_FLAGS "--threads=${NVCC_THREADS}")
endif()
#
# Set rocm version dev int.
#
if(VLLM_GPU_LANG STREQUAL "HIP")
list(APPEND VLLM_GPU_FLAGS "-DROCM_VERSION=${ROCM_VERSION_DEV_INT}")
endif()
#
# Define extension targets
#
#
# _C extension
#
set(VLLM_EXT_SRC
"csrc/cache_kernels.cu"
"csrc/attention/attention_kernels.cu"
"csrc/pos_encoding_kernels.cu"
"csrc/activation_kernels.cu"
"csrc/layernorm_kernels.cu"
"csrc/quantization/squeezellm/quant_cuda_kernel.cu"
"csrc/quantization/gptq/q_gemm.cu"
"csrc/quantization/compressed_tensors/int8_quant_kernels.cu"
"csrc/quantization/fp8/common.cu"
"csrc/cuda_utils_kernels.cu"
"csrc/moe_align_block_size_kernels.cu"
"csrc/prepare_inputs/advance_step.cu"
"csrc/torch_bindings.cpp")
if(VLLM_GPU_LANG STREQUAL "CUDA")
include(FetchContent)
SET(CUTLASS_ENABLE_HEADERS_ONLY ON CACHE BOOL "Enable only the header library")
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/nvidia/cutlass.git
# CUTLASS 3.5.1
GIT_TAG 06b21349bcf6ddf6a1686a47a137ad1446579db9
GIT_PROGRESS TRUE
)
FetchContent_MakeAvailable(cutlass)
list(APPEND VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/mamba/causal_conv1d/causal_conv1d.cu"
"csrc/quantization/aqlm/gemm_kernels.cu"
"csrc/quantization/awq/gemm_kernels.cu"
"csrc/quantization/marlin/dense/marlin_cuda_kernel.cu"
"csrc/quantization/marlin/sparse/marlin_24_cuda_kernel.cu"
"csrc/quantization/marlin/qqq/marlin_qqq_gemm_kernel.cu"
"csrc/quantization/gptq_marlin/gptq_marlin.cu"
"csrc/quantization/gptq_marlin/gptq_marlin_repack.cu"
"csrc/quantization/gptq_marlin/awq_marlin_repack.cu"
"csrc/quantization/gguf/gguf_kernel.cu"
"csrc/quantization/fp8/fp8_marlin.cu"
"csrc/custom_all_reduce.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_entry.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c2x.cu"
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu")
#
# The CUTLASS kernels for Hopper require sm90a to be enabled.
# This is done via the below gencode option, BUT that creates kernels for both sm90 and sm90a.
# That adds an extra 17MB to compiled binary, so instead we selectively enable it.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
set_source_files_properties(
"csrc/quantization/cutlass_w8a8/scaled_mm_c3x.cu"
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
endif()
#
# Machete kernels
# The machete kernels only work on hopper and require CUDA 12.0 or later.
if(${CMAKE_CUDA_COMPILER_VERSION} VERSION_GREATER 12.0)
#
# For the Machete kernels we automatically generate sources for various
# preselected input type pairs and schedules.
# Generate sources:
execute_process(
COMMAND ${CMAKE_COMMAND} -E env
PYTHONPATH=${CMAKE_CURRENT_SOURCE_DIR}/csrc/cutlass_extensions/:${CUTLASS_DIR}/python/:${VLLM_PYTHON_PATH}:$PYTHONPATH
${Python_EXECUTABLE} ${CMAKE_CURRENT_SOURCE_DIR}/csrc/quantization/machete/generate.py
RESULT_VARIABLE machete_generation_result
OUTPUT_VARIABLE machete_generation_output
OUTPUT_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
ERROR_FILE ${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log
)
if (NOT machete_generation_result EQUAL 0)
message(FATAL_ERROR "Machete generation failed."
" Result: \"${machete_generation_result}\""
"\nCheck the log for details: "
"${CMAKE_CURRENT_BINARY_DIR}/machete_generation.log")
else()
message(STATUS "Machete generation completed successfully.")
endif()
# Add machete generated sources
file(GLOB MACHETE_GEN_SOURCES "csrc/quantization/machete/generated/*.cu")
list(APPEND VLLM_EXT_SRC ${MACHETE_GEN_SOURCES})
message(STATUS "Machete generated sources: ${MACHETE_GEN_SOURCES}")
set_source_files_properties(
${MACHETE_GEN_SOURCES}
PROPERTIES
COMPILE_FLAGS
"-gencode arch=compute_90a,code=sm_90a")
endif()
# Add pytorch binding for machete (add on even CUDA < 12.0 so that we can
# raise an error if the user that this was built with an incompatible
# CUDA version)
list(APPEND VLLM_EXT_SRC
csrc/quantization/machete/machete_pytorch.cu)
endif()
if(VLLM_GPU_LANG STREQUAL "HIP")
list(APPEND VLLM_EXT_SRC
"csrc/custom_all_reduce.cu")
endif()
define_gpu_extension_target(
_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
INCLUDE_DIRECTORIES ${CUTLASS_INCLUDE_DIR}
USE_SABI 3
WITH_SOABI)
if(VLLM_GPU_LANG STREQUAL "HIP")
#
# custom extension
#
set(CUSTOM_SRC
"csrc/custom/torch_bindings.cpp"
"csrc/custom/custom_kernels.cu"
"csrc/custom/fused_kernels.cu"
"csrc/custom/custom.cu"
"csrc/custom/paged_attention/attention_ll4mi.cu"
)
define_gpu_extension_target(
_custom_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${CUSTOM_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
endif()
#
# _moe_C extension
#
set(VLLM_MOE_EXT_SRC
"csrc/moe/torch_bindings.cpp"
"csrc/moe/topk_softmax_kernels.cu")
if(VLLM_GPU_LANG STREQUAL "CUDA")
list(APPEND VLLM_MOE_EXT_SRC
"csrc/moe/marlin_moe_ops.cu")
endif()
define_gpu_extension_target(
_moe_C
DESTINATION vllm
LANGUAGE ${VLLM_GPU_LANG}
SOURCES ${VLLM_MOE_EXT_SRC}
COMPILE_FLAGS ${VLLM_GPU_FLAGS}
ARCHITECTURES ${VLLM_GPU_ARCHES}
USE_SABI 3
WITH_SOABI)
if(VLLM_GPU_LANG STREQUAL "CUDA" OR VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling C extension.")
add_dependencies(default _C)
message(STATUS "Enabling moe extension.")
add_dependencies(default _moe_C)
endif()
if(VLLM_GPU_LANG STREQUAL "HIP")
message(STATUS "Enabling custom extension.")
add_dependencies(default _custom_C)
endif()