-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathperformance.py
64 lines (55 loc) · 1.72 KB
/
performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Script to test performance of SamplableSet vs random choice from numpy
Author: Guillaume St-Onge <[email protected]>
"""
import numpy as np
import matplotlib.pyplot as plt
from time import time
from SamplableSet import SamplableSet
#Sampling test
Nlist = [10,30,100,300,1000,3000,10**4]
ss_time_list = []
choice_time_list = []
for N in Nlist:
weights = np.arange(1,N+1,dtype=np.float64)
weights /= np.sum(weights)
elements = list(range(1,N+1))
#test random choice --- each time it is as if the distribution was new
t1 = time()
for i in range(5*10**4):
np.random.choice(elements,p=weights)
t2 = time()
choice_time_list.append(t2-t1)
#test SamplableSet
t1 = time()
s = SamplableSet(min(weights),max(weights), zip(elements,weights))
for i in range(5*10**4):
e,w = s.sample()
s[e] = w*1.
t2 = time()
ss_time_list.append(t2-t1)
#Plot results
font_size=8
plt.style.use('seaborn-paper')
plt.rc('text', usetex=True)
plt.rc('font',family='serif',serif='Computer Modern')
plt.rc('xtick', labelsize=font_size)
plt.rc('ytick', labelsize=font_size)
plt.rc('axes', labelsize=font_size)
plt.rc('legend', fontsize=font_size-1)
#color list
color_list = ["#41b6c4","#0c2c84"]
#define figure
width = 7.057/2
height = width/1.5
fig = plt.figure(figsize=(width, height))
ax = fig.add_subplot(1,1,1)
plt.subplots_adjust(left=0.19, bottom=0.17, right=0.95,top=0.95)
plt.loglog(Nlist, choice_time_list, color=color_list[0], label="NumPy RC")
plt.loglog(Nlist, ss_time_list, color=color_list[1], label="SamplableSet")
plt.xlabel("Vector size")
plt.ylabel(r"Time [s] for $5 \times 10^4$ samples")
plt.legend(frameon=False)
plt.show()