-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_superresolver.py
148 lines (112 loc) · 3.93 KB
/
train_superresolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import random
import time
import os
from PIL import Image
downscaled = "formatted/downscaled"
target = "formatted/target"
img_filenames = os.listdir(downscaled)
def display_tensor(x):
x = np.transpose(x.numpy(), (1, 2, 0))
img = Image.fromarray((255 * x + 0.5).astype(np.uint8))
img.show()
def generate_checkpoint_image(x, y, sfs, device=None):
nn_upsamp = nn.Upsample(scale_factor=2, mode="nearest")
bc_upsamp = nn.Upsample(scale_factor=2, mode="bicubic")
if device is not None:
nn_upsamp = nn_upsamp.to(device)
bc_upsamp = bc_upsamp.to(device)
sfs = sfs.to(device)
x = x.to(device)
y = y.to(device)
rows = x.shape[0]
canvas = np.zeros((rows * 32, 32 * 5, 3), dtype=np.uint8)
with torch.no_grad():
h = np.transpose(sfs(x).cpu().numpy(), (0, 2, 3, 1))
n = np.transpose(nn_upsamp(x).cpu().numpy(), (0, 2, 3, 1))
bc = np.transpose(bc_upsamp(x).cpu().numpy(), (0, 2, 3, 1))
x = np.transpose(x.cpu().numpy(), (0, 2, 3, 1))
y = np.transpose(y.cpu().numpy(), (0, 2, 3, 1))
rescale = lambda x: np.clip(255 * x + 0.5, 0, 255).astype(np.uint8)
for i in range(rows):
canvas[32 * i + 8:32 * (i + 1) - 8, 32 * 0 + 8:32 * 1 - 8, :] = rescale(x[i])
canvas[32 * i:32 * (i + 1), 32 * 1:32 * 2, :] = rescale(n[i])
canvas[32 * i:32 * (i + 1), 32 * 2:32 * 3, :] = rescale(y[i])
canvas[32 * i:32 * (i + 1), 32 * 3:32 * 4, :] = rescale(bc[i])
canvas[32 * i:32 * (i + 1), 32 * 4:32 * 5, :] = rescale(h[i])
return Image.fromarray(canvas)
def get_batch(batch_size=64):
filenames = [random.choice(img_filenames) for _ in range(batch_size)]
x = []
y = []
for fname in filenames:
x_im = np.array(Image.open(os.path.join(downscaled, fname)))
y_im = np.array(Image.open(os.path.join(target, fname)))
x.append(x_im)
y.append(y_im)
x = np.transpose(np.array(x), (0, 3, 1, 2)) / 255.
y = np.transpose(np.array(y), (0, 3, 1, 2)) / 255.
x = torch.tensor(x).float()
y = torch.tensor(y).float()
return x, y
# takes in 16x16 images, produces 32x32
class SmallFaceSuperresolver(nn.Module):
def __init__(self):
nn.Module.__init__(self)
self.upsamp = nn.Upsample(scale_factor=2)
self.conv1 = nn.ConvTranspose2d(3, 32, (5, 5))
self.conv2 = nn.ConvTranspose2d(32, 64, (5, 5))
self.conv3 = nn.ConvTranspose2d(64, 128, (5, 5))
self.conv4 = nn.ConvTranspose2d(128, 256, (5, 5))
self.conv5 = nn.Conv2d(64 + 256, 256, (1, 1))
self.conv6 = nn.Conv2d(256, 3, (1, 1))
def forward(self, x):
x = F.leaky_relu(self.conv1(x), 0.05)
x = F.leaky_relu(self.conv2(x), 0.05)
c2_skip = self.upsamp(x)
c2_crop = c2_skip[:, :, 8:40, 8:40]
x = F.leaky_relu(self.conv3(x), 0.05)
x = F.leaky_relu(self.conv4(x), 0.05)
x = torch.cat((x, c2_crop), dim=1)
x = F.leaky_relu(self.conv5(x), 0.05)
x = torch.sigmoid(self.conv6(x))
return x
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sfs = SmallFaceSuperresolver().to(device)
opt = optim.Adam(sfs.parameters(), lr=0.001)
loss_func = nn.L1Loss()
NUM_EPOCHS = 200
MB_PER_EPOCH = 64
cx, cy = get_batch(batch_size=8)
baseline = nn.Upsample(scale_factor=2, mode="bicubic")
baseline_loss = 0.0
for mb in range(MB_PER_EPOCH):
x, y = get_batch()
x = x.to(device)
y = y.to(device)
predicted = baseline(x)
loss = loss_func(predicted, y)
baseline_loss += loss.item() / MB_PER_EPOCH
print("Baseline (bicubic) loss: %0.05f" % baseline_loss)
print()
for epoch in range(NUM_EPOCHS):
print(f"Epoch #{epoch + 1}")
st = time.time()
running_loss = 0.0
for mb in range(MB_PER_EPOCH):
x, y = get_batch()
x = x.to(device)
y = y.to(device)
opt.zero_grad()
predicted = sfs(x)
loss = loss_func(predicted, y)
loss.backward()
opt.step()
running_loss += loss.item() / MB_PER_EPOCH
print(" Average loss: %0.05f" % running_loss)
print(" Time taken: %0.02f" % (time.time() - st))
generate_checkpoint_image(cx, cy, sfs, device).save("run-checkpoints/checkpoint%03d.png" % epoch)