-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreward_functions.py
179 lines (148 loc) · 6.61 KB
/
reward_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
"""
Authors: Neil Thistlethwaite
(add your name above if you contribute to this file)
The Agency, Reinforcement Learning for Tetris
Allows us to do "reward shaping" and provide smoother rewards to our agent
rather than just when it clears lines.
"""
## These constants aren't used right now, they were from the reward refactor.
GAME_END_REWARD = -200
# Applied when a line is cleared
LINE_CLEAR_REWARD = 10
# Applied to disincentivize higher stacks, so if current stack is 3 high,
# adds reward 3 * (PER_HIGHEST_PIECE_REWARD). Should be negative.
PER_HIGHEST_PIECE_REWARD = -5
# Applied for each "isolated hole" present in the stack so far.
PER_ISOLATED_HOLE_REWARD = -3
# Applied whenever a new piece is received
NEW_PIECE_REWARD = -2
class RewardFunction:
def __init__(self):
pass
def update_and_get_reward(self, state, action):
"""Calls {state.update} with {action} and returns the reward."""
line_clear_reward = state.update()
end_game_penalty = -50000 * state.stop
# print(end_game_penalty)
return line_clear_reward + end_game_penalty
class LinesClearedReward(RewardFunction):
"""The base class effectively already does this."""
pass
class LinesClearedMultiplierReward(RewardFunction):
def update_and_get_reward(self, state, action):
lines_cleared = state.update(action)
if lines_cleared == 0:
return 0
elif lines_cleared == 1:
return 1
elif lines_cleared == 2:
return 3
elif lines_cleared == 3:
return 6
elif lines_cleared == 4:
return 10
class HeightPenaltyReward(RewardFunction):
def __init__(self, multiplier, game_over_penalty):
self.multiplier = multiplier
self.game_over_penalty = game_over_penalty
def update_and_get_reward(self, state, action):
lines_cleared = state.update(action)
# will add a penalty between [0, -multiplier]
# depending on how tall the stack is
highest_row = 0
for row in range(state.height-1, -1, -1):
if any(state.game_board[i][row] > 0 for i in range(state.width)):
highest_row = row + 1
break
reward = lines_cleared - self.multiplier * (highest_row / state.height)
if state.stop:
reward = reward - self.game_over_penalty
return reward
end_game_penalty = -10 * state.stop
# print(end_game_penalty)
return reward + end_game_penalty
# http://cs231n.stanford.edu/reports/2016/pdfs/121_Report.pdf
class multipleRewards(RewardFunction):
def __init__(self, height_mult=-0.67, hole_mult=-0.36, bumpiness_mult=-0.18, lineclear_mult=0.8):
self.height_mult = height_mult
self.hole_mult = hole_mult
self.lineclear_mult = lineclear_mult
self.bumpiness_mult = bumpiness_mult
def update_and_get_reward(self, state, action):
parent_reward = super().update_and_get_reward(state, action)
lines_cleared_reward = state.update(action) ** 2 * self.lineclear_mult
height_penalty = 0
hole_penalty = 0
global_max_height = 0
top_row = 0
max_height_cols = []
bumpiness_penalty = 0
for i in range(state.width):
max_height = -1
j = 0
holes = 0
while j < state.height:
if state.game_board[i][j] > 0:
max_height = j
# holes += 1
# if state.game_board[i][j] < 0:
# piece_height_sum += j
j += 1
for k in range(0, max_height):
if state.game_board[i][k] == 0:
holes += 1
max_height += 1
max_height_cols.append(max_height)
hole_penalty += holes
global_max_height = max(global_max_height, max_height)
# height_penalty += (max_height + 1) * self.height_mult
# top_row = max(top_row, max_height)
# hole_penalty += sum(state.game_board[i][h] == 0 for h in range(0, max_height))
# if hole_count > max_height:
# print(state.get_current_board())
# print("max height and hole count: ", max_height, hole_count)
# print(max_height_cols)
for i in range(0, state.width, 2):
left = i - 1
right = i + 1
if left >= 0:
bumpiness_penalty += abs(max_height_cols[i] - max_height_cols[left])
# if abs(max_height_cols[i] - max_height_cols[left]):
# print("at col ", i ,", the bumpiness =", abs(max_height_cols[i] - max_height_cols[left]))
if right < state.width:
bumpiness_penalty += abs(max_height_cols[i] - max_height_cols[right])
# if abs(max_height_cols[i] - max_height_cols[right]):
# print("at col ", i ,", the bumpiness =", abs(max_height_cols[i] - max_height_cols[right]))
# print(state.get_current_board())
height_penalty = global_max_height * 10
bumpiness_penalty *= self.bumpiness_mult
height_penalty *= self.height_mult
hole_penalty *= self.hole_mult
# print("bumpiness = ", bumpiness_penalty)
# print("height = ", height_penalty)
# print("hole = ", hole_penalty)
# print("----------------------------------")
# print("hole penalty:", hole_penalty)
# print("height penalty", height_penalty)
# height_penalty = highest_row * self.height_mult * 20
# height_penalty *= self.height_mult
# for j in range(top_row):
# for i in range(state.width):
# hole_penalty += state.game_board[i][j] == 0
# hole_penalty *= self.hole_mult
return parent_reward + height_penalty + hole_penalty + bumpiness_penalty + lines_cleared_reward
### old code from state refactor: consider using later?
## def get_reward(self):
## reward = self.reward
## for row in range(self.height-1, -1, -1):
## if any(self.game_board[i][row] > 0 for i in range(self.width)):
## # something is on row i, apply penalty
## reward += PER_HIGHEST_PIECE_REWARD * (row + 1)
## break
## for i in range(1, self.width - 1):
## for j in range(1, self.height - 1):
## if self.game_board[i][j] == 0:
## if all(self.game_board[i+dx][j+dy] > 0 for dx, dy in
## ((1,0),(0,1),(-1,0),(0,-1))):
## reward += PER_ISOLATED_HOLE_REWARD
## return reward