-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
88 lines (83 loc) · 3.53 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import torch
from layer import *
class Model(nn.Module):
def __init__(self, etypes, in_feats, hidden_feats,
num_emb_layers, agg_type='sum', k=0, dropout=0., bn=False,
skip=True, mil=True):
"""
Parameters
----------
etypes : list
e.g: ['disease-disease', 'drug-disease', 'drug-drug']
in_feats : dict[str, int]
Input feature size for each node type.
hidden_feats : int
Hidden feature size.
num_emb_layers : int
Number of embedding layers to be used.
agg_type : string
Type of meta-path aggregator to be used, including "sum", "average", "linear", and "RotatE".
dropout : float
The dropout rate to be used.
bn : bool
Whether to use batch normalization layer.
"""
super(Model, self).__init__()
self.lin_transform = HeteroLinear(in_feats, hidden_feats, dropout, bn)
self.graph_embedding = nn.ModuleDict()
for l in range(num_emb_layers):
self.graph_embedding['Layer_{}'.format(l)] = Node_Embedding(etypes,
hidden_feats,
hidden_feats,
dropout, bn)
self.layer_attention_drug = LayerAttention(hidden_feats,
hidden_feats)
self.layer_attention_dis = LayerAttention(hidden_feats,
hidden_feats)
self.aggregator = MetaPathAggregator(hidden_feats, hidden_feats, agg_type)
self.mil_layer = MILNet(hidden_feats, hidden_feats)
self.bag_predict = MLP(hidden_feats, dropout=0.)
if k > 0 and agg_type == 'BiTrans':
self.ins_predict = InstanceNet(hidden_feats, k)
else:
self.ins_predict = None
self.skip = skip
self.mil = mil
def forward(self, g, feature, mp_ins):
"""
Parameters
----------
g : dgl.graph
Heterogeneous graph representing the drug-disease network.
feature : dict[node_types, feature_tensors]
Initialized node features of g.
mp_ins : torch.tensor
Bags of meta-path instances.
"""
h_integrated_drug, h_integrated_dis = [], []
h = self.lin_transform(feature)
h_integrated_drug.append(h['drug'])
h_integrated_dis.append(h['disease'])
for emb_layer in self.graph_embedding:
h = self.graph_embedding[emb_layer](g, h)
h_integrated_drug.append(h['drug'])
h_integrated_dis.append(h['disease'])
if self.skip:
h = dict(zip(['drug', 'disease'],
[torch.stack(h_integrated_drug, dim=1),
torch.stack(h_integrated_dis, dim=1)]))
h['drug'] = self.layer_attention_drug(h['drug'])
h['disease'] = self.layer_attention_dis(h['disease'])
ins_emb = self.aggregator(h, mp_ins)
if self.mil:
bag_emb, attn = self.mil_layer(ins_emb)
else:
# Ablation study
bag_emb = ins_emb.sum(dim=1)
attn = None
pred_bag = self.bag_predict(bag_emb)
if self.ins_predict:
# Ablation study
pred_ins = self.ins_predict(ins_emb, attn)
return (pred_ins + pred_bag) / 2, attn
return pred_bag, attn