-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
210 lines (186 loc) · 7.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import datetime
import numpy as np
import torch
import random
import seaborn
import os
from sklearn.metrics import roc_curve, roc_auc_score, \
precision_recall_curve, average_precision_score
import matplotlib.pyplot as plt
def get_metrics_auc(real_score, predict_score):
AUC = roc_auc_score(real_score, predict_score)
AUPR = average_precision_score(real_score, predict_score)
return AUC, AUPR
def get_metrics(real_score, predict_score):
"""Calculate the performance metrics.
Resource code is acquired from:
Yu Z, Huang F, Zhao X et al.
Predicting drug-disease associations through layer attention graph convolutional network,
Brief Bioinform 2021;22.
Parameters
----------
real_score: true labels
predict_score: model predictions
Return
---------
AUC, AUPR, Accuracy, F1-Score, Precision, Recall, Specificity
"""
sorted_predict_score = np.array(
sorted(list(set(np.array(predict_score).flatten()))))
sorted_predict_score_num = len(sorted_predict_score)
thresholds = sorted_predict_score[np.int32(
sorted_predict_score_num * np.arange(1, 1000) / 1000)]
thresholds = np.mat(thresholds)
thresholds_num = thresholds.shape[1]
predict_score_matrix = np.tile(predict_score, (thresholds_num, 1))
negative_index = np.where(predict_score_matrix < thresholds.T)
positive_index = np.where(predict_score_matrix >= thresholds.T)
predict_score_matrix[negative_index] = 0
predict_score_matrix[positive_index] = 1
TP = predict_score_matrix.dot(real_score.T)
FP = predict_score_matrix.sum(axis=1) - TP
FN = real_score.sum() - TP
TN = len(real_score.T) - TP - FP - FN
fpr = FP / (FP + TN)
tpr = TP / (TP + FN)
ROC_dot_matrix = np.mat(sorted(np.column_stack((fpr, tpr)).tolist())).T
ROC_dot_matrix.T[0] = [0, 0]
ROC_dot_matrix = np.c_[ROC_dot_matrix, [1, 1]]
x_ROC = ROC_dot_matrix[0].T
y_ROC = ROC_dot_matrix[1].T
auc = 0.5 * (x_ROC[1:] - x_ROC[:-1]).T * (y_ROC[:-1] + y_ROC[1:])
recall_list = tpr
precision_list = TP / (TP + FP)
PR_dot_matrix = np.mat(sorted(np.column_stack(
(recall_list, precision_list)).tolist())).T
PR_dot_matrix.T[0] = [0, 1]
PR_dot_matrix = np.c_[PR_dot_matrix, [1, 0]]
x_PR = PR_dot_matrix[0].T
y_PR = PR_dot_matrix[1].T
aupr = 0.5 * (x_PR[1:] - x_PR[:-1]).T * (y_PR[:-1] + y_PR[1:])
f1_score_list = 2 * TP / (len(real_score.T) + TP - TN)
accuracy_list = (TP + TN) / len(real_score.T)
specificity_list = TN / (TN + FP)
max_index = np.argmax(f1_score_list)
f1_score = f1_score_list[max_index]
accuracy = accuracy_list[max_index]
specificity = specificity_list[max_index]
recall = recall_list[max_index]
precision = precision_list[max_index]
return auc[0, 0], aupr[0, 0], accuracy, f1_score, precision, recall, specificity
def set_seed(seed=0):
print('seed = {}'.format(seed))
os.environ['PYTHONHASHSEED'] = str(seed)
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
torch.set_num_threads(1)
random.seed(seed)
np.random.seed(seed)
# dgl.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def checkpoint(args, model, check_list, score, fold):
saved = False
check_list = np.array(check_list)
if args.check_metric == 'loss':
checks = check_list[:, 0]
if score[0] <= min(checks):
saved = True
elif args.check_metric == 'auc':
checks = check_list[:, 1]
if score[1] >= max(checks):
saved = True
elif args.check_metric == 'aupr':
checks = check_list[:, 2]
if score[2] >= max(checks):
saved = True
if saved:
torch.save(model.state_dict(), os.path.join(args.saved_path,
'model_{}.pkl'.format(fold)))
return model
class EarlyStopping(object):
def __init__(self, patience=10, saved_path='.'):
dt = datetime.datetime.now()
self.filename = os.path.join(saved_path, 'early_stop_{}_{:02d}-{:02d}-{:02d}.pth'.format(
dt.date(), dt.hour, dt.minute, dt.second))
self.patience = patience
self.counter = 0
self.best_acc = None
self.best_loss = None
self.early_stop = False
def step(self, loss, acc, model):
if self.best_loss is None:
self.best_acc = acc
self.best_loss = loss
self.save_checkpoint(model)
elif (loss > self.best_loss) and (acc < self.best_acc):
self.counter += 1
# print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
if self.counter >= self.patience:
self.early_stop = True
else:
if (loss <= self.best_loss) and (acc >= self.best_acc):
self.save_checkpoint(model)
self.best_loss = np.min((loss, self.best_loss))
self.best_acc = np.max((acc, self.best_acc))
self.counter = 0
return self.early_stop
def save_checkpoint(self, model):
"""Saves model when validation loss decreases."""
torch.save(model.state_dict(), self.filename)
def load_checkpoint(self, model):
"""Load the latest checkpoint."""
model.load_state_dict(torch.load(self.filename))
def plot_result_auc(args, label, predict, auc):
"""Plot the ROC curve for predictions.
Parameters
----------
args: argumentation
label: true labels
predict: model predictions
auc: calculated AUROC score
"""
seaborn.set_style()
fpr, tpr, threshold = roc_curve(label, predict)
plt.figure()
lw = 2
plt.figure(figsize=(8, 8))
plt.plot(fpr, tpr, color='darkorange',
lw=lw, label='ROC curve (area = %0.4f)' % auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc='lower right')
plt.savefig(os.path.join(args.saved_path, 'result_auc.png'))
plt.clf()
def plot_result_aupr(args, label, predict, aupr):
"""Plot the ROC curve for predictions.
Parameters
----------
args: argumentation
label: true labels
predict: model predictions
aupr: calculated AUPR score
"""
seaborn.set_style()
precision, recall, thresholds = precision_recall_curve(label, predict)
plt.figure()
lw = 2
plt.figure(figsize=(8, 8))
plt.plot(precision, recall, color='darkorange',
lw=lw, label='AUPR Score (area = %0.4f)' % aupr)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.title('RPrecision/Recall Curve')
plt.legend(loc='lower right')
plt.savefig(os.path.join(args.saved_path, 'result_aupr.png'))
plt.clf()