This repository has been archived by the owner on May 7, 2024. It is now read-only.
forked from baumgach/PHiSeg-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathphiseg_sample_construction.py
162 lines (116 loc) · 5.72 KB
/
phiseg_sample_construction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import glob
import logging
import os
from importlib.machinery import SourceFileLoader
import cv2
import numpy as np
import config.system as sys_config
import utils
from data.data_switch import data_switch
from phiseg.phiseg_model import phiseg
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
import matplotlib.pyplot as plt
import itertools
def findsubsets(S,m):
return list(itertools.combinations(S, m))
def main(model_path, exp_config):
# Make and restore vagan model
phiseg_model = phiseg(exp_config=exp_config)
phiseg_model.load_weights(model_path, type='best_dice')
data_loader = data_switch(exp_config.data_identifier)
data = data_loader(exp_config)
outfolder = '/home/baumgach/Reports/ETH/MICCAI2019_segvae/raw_figures'
ims = exp_config.image_size
# x_b, s_b = data.test.next_batch(1)
# heart 100
# prostate 165
index = 165 # 100 is a normal image, 15 is a very good slice
x_b = data.test.images[index, ...].reshape([1] + list(exp_config.image_size))
if exp_config.data_identifier == 'lidc':
s_b = data.test.labels[index, ...]
if np.sum(s_b[..., 0]) > 0:
s_b = s_b[..., 0]
elif np.sum(s_b[..., 1]) > 0:
s_b = s_b[..., 1]
elif np.sum(s_b[..., 2]) > 0:
s_b = s_b[..., 2]
else:
s_b = s_b[..., 3]
s_b = s_b.reshape([1] + list(exp_config.image_size[0:2]))
elif exp_config.data_identifier == 'uzh_prostate':
s_b = data.test.labels[index, ...]
s_b = s_b[..., 0]
s_b = s_b.reshape([1] + list(exp_config.image_size[0:2]))
else:
s_b = data.test.labels[index, ...].reshape([1] + list(exp_config.image_size[0:2]))
x_b_for_cnt = utils.convert_to_uint8(np.squeeze(x_b.copy()))
x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_GRAY2BGR)
x_b_for_cnt = utils.resize_image(x_b_for_cnt, (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
x_b_for_cnt = utils.histogram_equalization(x_b_for_cnt)
for ss in range(3):
print(ss)
s_p_list = phiseg_model.predict_segmentation_sample_levels(x_b, return_softmax=False)
accum_list = [None]*exp_config.latent_levels
accum_list[exp_config.latent_levels-1] = s_p_list[-1]
for lvl in reversed(range(exp_config.latent_levels-1)):
accum_list[lvl] = accum_list[lvl+1] + s_p_list[lvl]
print('Plotting accum_list')
for ii, img in enumerate(accum_list):
plt.figure()
img = utils.resize_image(np.squeeze(np.argmax(img, axis=-1)), (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
plt.imshow(img[2*30:2*192-2*30,2*30:2*192-2*30], cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'segm_lvl_%d_samp_%d.png' % (ii, ss)),bbox_inches='tight')
print('Plotting s_p_list')
for ii, img in enumerate(s_p_list):
img = utils.softmax(img)
plt.figure()
img = utils.resize_image(np.squeeze(img[...,1]), (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
plt.imshow(img[2*30:2*192-2*30,2*30:2*192-2*30], cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'residual_lvl_%d_samp_%d.png' % (ii, ss)),bbox_inches='tight')
s_p_d = np.uint8((np.squeeze(np.argmax(accum_list[0], axis=-1)) / (exp_config.nlabels-1)) * 255)
s_p_d = utils.resize_image(s_p_d, (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
print('Calculating contours')
print(np.unique(s_p_d))
rv = cv2.inRange(s_p_d, 84, 86)
my = cv2.inRange(s_p_d, 169, 171)
rv_cnt, hierarchy = cv2.findContours(rv, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
my_cnt, hierarchy = cv2.findContours(my, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
x_b_for_cnt = cv2.drawContours(x_b_for_cnt, rv_cnt, -1, (0, 255, 0), 1)
x_b_for_cnt = cv2.drawContours(x_b_for_cnt, my_cnt, -1, (0, 0, 255), 1)
x_b_for_cnt = cv2.cvtColor(x_b_for_cnt, cv2.COLOR_BGR2RGB)
print('Plotting final images...')
plt.figure()
plt.imshow(x_b_for_cnt[2*30:2*192-2*30,2*30:2*192-2*30,:], cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'input_img_cnts.png'),bbox_inches='tight')
plt.figure()
x_b = utils.convert_to_uint8(x_b)
x_b = cv2.cvtColor(np.squeeze(x_b), cv2.COLOR_GRAY2BGR)
x_b = utils.histogram_equalization(x_b)
x_b = utils.resize_image(x_b, (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
plt.imshow(x_b[2*30:2*192-2*30,2*30:2*192-2*30], cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'input_img.png'),bbox_inches='tight')
plt.figure()
s_b = utils.resize_image(np.squeeze(s_b), (2*ims[0], 2*ims[1]), interp=cv2.INTER_NEAREST)
plt.imshow(s_b[2*30:2*192-2*30,2*30:2*192-2*30], cmap='gray')
plt.axis('off')
plt.savefig(os.path.join(outfolder, 'gt_seg.png'),bbox_inches='tight')
# plt.show()
if __name__ == '__main__':
base_path = sys_config.project_root
# Code for selecting experiment from command line
# parser = argparse.ArgumentParser(
# description="Script for a simple test loop evaluating a network on the test dataset")
# parser.add_argument("EXP_PATH", type=str, help="Path to experiment folder (assuming you are in the working directory)")
# args = parser.parse_args()
# exp_path = args.EXP_PATH
#
exp_path = '/itet-stor/baumgach/net_scratch/logs/phiseg/uzh_prostate/phiseg_7_5'
model_path = os.path.join(base_path, exp_path)
config_file = glob.glob(model_path + '/*py')[0]
config_module = config_file.split('/')[-1].rstrip('.py')
exp_config = SourceFileLoader(config_module, os.path.join(config_file)).load_module()
main(model_path, exp_config=exp_config)