-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgenetic_algorithm.py
89 lines (65 loc) · 2.86 KB
/
genetic_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
def score_function(replicate):
result = np.sum(replicate, axis=1)
result = result.reshape((replicate.shape[0], 1))
return result
def selection(candidates, scores, M):
N = candidates.shape[0]
probs = scores/np.sum(scores)
idx = np.random.choice(np.arange(0, N), size=M, replace=False, p=probs)
return candidates[idx,:]
def parent_selection(candidates, scores, M):
M = int(M)
N = candidates.shape[0]
probs = scores/np.sum(scores)
idx = np.random.choice(np.arange(0, N), size=M, replace=False, p=probs)
return candidates[idx,:]
def mating(candidates):
# TODO : parameterize proportion to crossover
N = candidates.shape[0]
C = candidates.shape[1]
midpoint = int(C/2)
partition_a = candidates[0:int(N/2),:]
partition_b = candidates[int(N/2):,:]
np.random.shuffle(partition_a)
np.random.shuffle(partition_b)
result_top = np.concatenate((partition_a[:,:midpoint], partition_b[:,midpoint:]), axis=1)
result_bot = np.concatenate((partition_b[:,:midpoint], partition_a[:,midpoint:]), axis=1)
result = np.concatenate((result_top, result_bot), axis=0)
return result
def mutate(candidates):
N = candidates.shape[0]
C = candidates.shape[1]
indicators = np.random.binomial(1, 1/C, C*N).reshape(N,C)
result = np.logical_xor(candidates,indicators)
return result.astype(int)
def fitness(scores):
return np.mean(scores)
def elite(candidates, scores, pop_size, elitism_size):
tmp = np.concatenate((candidates, scores), axis=1)
idx = np.argsort(-tmp[:, -1])
sorted_candidates = tmp[idx]
elite_candidates = sorted_candidates[:elitism_size,:-1]
remaining = sorted_candidates[elitism_size:,:-1]
weights = sorted_candidates[elitism_size:,-1]
selected_children = selection(remaining, weights, pop_size - elitism_size)
return (selected_children, elite_candidates)
def optimize(n_iter, candidates, scores, pop_size, elitism_size):
remaining, elite_candidates = elite(candidates, scores, pop_size, elitism_size)
for iter in np.arange(n_iter):
weights = score_function(remaining)
parents = parent_selection(remaining, weights, pop_size/2)
children = mutate(mating(parents))
# plot avg, plot best score per gen
children_score = score_function(children)
selected_children = selection(children, children_score, pop_size-elitism_size)
next_gen = np.concatenate((elite_candidates, selected_children), axis=0)
remaining, elite_candidates = elite(next_gen, score_function(next_gen), pop_size, elitism_size)
return remaining, elite_candidates
if __name__ == '__main__':
K = 10
candidates = np.random.binomial(1, 1/10, K*K).reshape(K,K)
scores = score_function(candidates)
pop_size = 8
parents = selection(candidates, scores, pop_size)
optimize(10, candidates, scores, 4, 4)