-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pro.py
624 lines (496 loc) · 26.8 KB
/
train_pro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import argparse
import torch
import torch.nn as nn
from torch.utils import data, model_zoo
import numpy as np
import pickle
from torch.autograd import Variable
import torch.optim as optim
import scipy.misc
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
import sys
import os
import os.path as osp
import random
import time
import yaml
#from tensorboardX import SummaryWriter
import math
from collections import Counter
from utils.loss import CrossEntropy2d
from utils.tool import adjust_learning_rate, adjust_learning_rate_D, Timer
import utils.imutils as imutils
from torchvision import transforms
from data.voc_dataset import VOCDataSet,VOCPDataSet
from data.cityscapes_dataset import cityscapesDataSet,cityscapesPDataSet
from PrototypeMemory import PrototypeMemory
from model.deeplab_multi import DeeplabMulti
from multiprocessing import Pool
from utils.metric import ConfusionMatrix
from tqdm import tqdm
#IMG_MEAN = np.array((0.485, 0.456, 0.406), dtype=np.float32)
IMG_MEAN = np.array((104.00698793, 116.66876762, 122.67891434), dtype=np.float32)
import os
os.environ['CUDA_VISIBLE_DEVICES'] = "0,1"
AUTOAUG = False
AUTOAUG_TARGET = False
MODEL = 'DeepLab'
BATCH_SIZE = 8
ITER_SIZE = 1
NUM_WORKERS = 0
DATA_DIRECTORY = './data/voc_dataset/'
DATA_LIST_PATH = './data/voc_list/train_aug.txt'
Label_DATA_LIST_PATH = './data/voc_list/train_aug_labeled_1-8.txt'
Unlabel_DATA_LIST_PATH = './data/voc_list/train_aug_unlabeled_1-8.txt'
Val_DATA_LIST_PATH = './data/voc_list/val.txt'
# DATA_DIRECTORY = './data/Cityscapes/data'
# DATA_LIST_PATH = './data/cityscapes_list/train.txt'
# Label_DATA_LIST_PATH = './data/cityscapes_list/train_aug_labeled_1-8.txt'
# Unlabel_DATA_LIST_PATH = './data/cityscapes_list/train_aug_unlabeled_1-8.txt'
# Val_DATA_LIST_PATH = './data/cityscapes_list/val.txt'
DROPRATE = 0.1
IGNORE_LABEL = 255
INPUT_SIZE = '505,505'
#DATA_DIRECTORY_TARGET = './data/Cityscapes/data'
#DATA_LIST_PATH_TARGET = './dataset/cityscapes_list/train.txt'
CROP_SIZE = '640, 360'
LEARNING_RATE = 1e-4
MOMENTUM = 0.9
MAX_VALUE = 2
NUM_CLASSES = 21
NUM_STEPS = 100000
NUM_STEPS_STOP = 100000 # early stopping
POWER = 0.9
RANDOM_SEED = 1234
#RESTORE_FROM = 'http://vllab1.ucmerced.edu/~whung/adv-semi-seg/resnet101COCO-41f33a49.pth'
#RESTORE_FROM = 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth'
#RESTORE_FROM = 'http://vllab.ucmerced.edu/ytsai/CVPR18/DeepLab_resnet_pretrained_init-f81d91e8.pth'
RESTORE_FROM = './test/8_voc/kl/best_model.pth'
SAVE_NUM_IMAGES = 2
SAVE_PRED_EVERY = 1000
SNAPSHOT_DIR = './snapshots/'
WEIGHT_DECAY = 0.0005
WARM_UP = 0 # no warmup
LOG_DIR = './log'
SPLIT_ID = None
LEARNING_RATE_D = 1e-4
LAMBDA_SEG = 0.1
LAMBDA_KL_TARGET = 0
LABELED_RATIO=0.125
TARGET = 'cityscapes'
SET = 'train'
NORM_STYLE = 'bn' # or in
#DATASET='cityscapes'
DATASET='pascal_voc'
SAVE_PATH = './test/8_voc/pros'
split_id='./splits/voc/split_2.pkl'
try:
import apex
from apex import amp
from apex.fp16_utils import *
except ImportError:
print('This is not an error. If you want to use low precision, i.e., fp16, please install the apex with cuda support (https://github.com/NVIDIA/apex) and update pytorch to 1.0')
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="DeepLab-ResNet Network")
parser.add_argument("--autoaug", action='store_true', help="use augmentation or not" )
parser.add_argument("--autoaug_target", action='store_true', help="use augmentation or not" )
parser.add_argument("--model", type=str, default=MODEL,
help="available options : DeepLab")
#parser.add_argument("--target", type=str, default=TARGET,
# help="available options : cityscapes")
parser.add_argument("--batch-size", type=int, default=BATCH_SIZE,
help="Number of images sent to the network in one step.")
parser.add_argument("--iter-size", type=int, default=ITER_SIZE,
help="Accumulate gradients for ITER_SIZE iterations.")
parser.add_argument("--num-workers", type=int, default=NUM_WORKERS,
help="number of workers for multithread dataloading.")
parser.add_argument("--data-dir", type=str, default=DATA_DIRECTORY,
help="Path to the directory containing the source dataset.")
parser.add_argument("--data_list", type=str, default=DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--ldata_list", type=str, default=Label_DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--uldata_list", type=str, default=Unlabel_DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--val_data_list", type=str, default=Val_DATA_LIST_PATH,
help="Path to the file listing the images in the source dataset.")
parser.add_argument("--droprate", type=float, default=DROPRATE,
help="DropRate.")
parser.add_argument("--ignore-label", type=int, default=IGNORE_LABEL,
help="The index of the label to ignore during the training.")
parser.add_argument("--input-size", type=str, default=INPUT_SIZE,
help="Comma-separated string with height and width of source images.")
parser.add_argument("--crop-size", type=str, default=CROP_SIZE,
help="Comma-separated string with height and width of source images.")
parser.add_argument("--split-id", type=str, default=SPLIT_ID,
help="split order id")
parser.add_argument("--is-training", action="store_true",
help="Whether to updates the running means and variances during the training.")
parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE,
help="Base learning rate for training with polynomial decay.")
parser.add_argument("--learning-rate-D", type=float, default=LEARNING_RATE_D,
help="Base learning rate for discriminator.")
parser.add_argument("--lambda-seg", type=float, default=LAMBDA_SEG,
help="lambda_seg.")
parser.add_argument("--lambda-kl-target", type=float, default=LAMBDA_KL_TARGET,
help="lambda_me for minimize kl loss on target.")
parser.add_argument("--momentum", type=float, default=MOMENTUM,
help="Momentum component of the optimiser.")
parser.add_argument("--max-value", type=float, default=MAX_VALUE,
help="Max Value of Class Weight.")
parser.add_argument("--norm-style", type=str, default=NORM_STYLE,
help="Norm Style in the final classifier.")
parser.add_argument("--not-restore-last", action="store_true",
help="Whether to not restore last (FC) layers.")
parser.add_argument("--num-classes", type=int, default=NUM_CLASSES,
help="Number of classes to predict (including background).")
parser.add_argument("--num-steps", type=int, default=NUM_STEPS,
help="Number of training steps.")
parser.add_argument("--num-steps-stop", type=int, default=NUM_STEPS_STOP,
help="Number of training steps for early stopping.")
parser.add_argument("--power", type=float, default=POWER,
help="Decay parameter to compute the learning rate.")
parser.add_argument("--labeled-ratio", type=float, default=LABELED_RATIO,
help="ratio of the labeled data to full dataset")
parser.add_argument("--fp16", action="store_true",
help="Use FP16.")
parser.add_argument("--random-seed", type=int, default=RANDOM_SEED,
help="Random seed to have reproducible results.")
parser.add_argument("--random-mirror", action="store_true",
help="Whether to randomly mirror the inputs during the training.")
parser.add_argument("--random-scale", action="store_true",
help="Whether to randomly scale the inputs during the training.")
parser.add_argument("--restore-from", type=str, default=RESTORE_FROM,
help="Where restore model parameters from.")
parser.add_argument("--save-num-images", type=int, default=SAVE_NUM_IMAGES,
help="How many images to save.")
parser.add_argument("--save-pred-every", type=int, default=SAVE_PRED_EVERY,
help="Save summaries and checkpoint every often.")
parser.add_argument("--snapshot-dir", type=str, default=SNAPSHOT_DIR,
help="Where to save snapshots of the model.")
parser.add_argument("--weight-decay", type=float, default=WEIGHT_DECAY,
help="Regularisation parameter for L2-loss.")
parser.add_argument("--warm-up", type=float, default=WARM_UP, help = 'warm up iteration')
parser.add_argument("--cpu", action='store_true', help="choose to use cpu device.")
parser.add_argument("--class-balance", action='store_true', help="class balance.")
parser.add_argument("--use-se", action='store_true', help="use se block.")
parser.add_argument("--only-hard-label",type=float, default=0,
help="class balance.")
parser.add_argument("--train_bn", action='store_true', help="train batch normalization.")
parser.add_argument("--sync_bn", action='store_true', help="sync batch normalization.")
parser.add_argument("--often-balance", action='store_true', help="balance the apperance times.")
parser.add_argument("--gpu-ids", type=str, default='0', help = 'choose gpus')
parser.add_argument("--tensorboard", action='store_false', help="choose whether to use tensorboard.")
parser.add_argument("--log-dir", type=str, default=LOG_DIR,
help="Path to the directory of log.")
parser.add_argument("--set", type=str, default=SET,
help="choose adaptation set.")
parser.add_argument("--dataset", type=str, default=DATASET,
help="dataset name pascal_voc or pascal_context")
parser.add_argument('--resume',action='store_false', help="use resume.")
#parser.add_argument('--local_rank', help='experiment configuration filename', default="lib/config/360CC_config.yaml", type=int)
return parser.parse_args()
args = get_arguments()
if not os.path.exists(args.snapshot_dir):
os.makedirs(args.snapshot_dir)
with open('%s/opts.yaml'%args.snapshot_dir, 'w') as fp:
yaml.dump(vars(args), fp, default_flow_style=False)
def online_meaniou(pred, y, iou_t):
pred_argmax = torch.argmax(pred,dim=1)
for i in range(pred.size(1)):
for j in range(pred.size(1)):
iou_t[i][j] += ((pred_argmax == j) & (y == i)).sum()
iou = []
for i in range(pred.size(1)):
if ((iou_t[i, :].sum() + iou_t[:, i].sum()) - iou_t[i][i]) > 0:
iou.append(iou_t[i][i] / ((iou_t[i, :].sum() + iou_t[:, i].sum()) - iou_t[i][i]))
else:
iou.append(0.)
mean_iou = sum(iou) / len(iou)
return iou_t, iou, mean_iou
def train_bn(m):
classname = m.__class__.__name__
if classname.find('BatchNorm') != -1:
m.train()
def load_state(path, model, optimizer=None, key="model_state_dict"):
#rank = dist.get_rank()
def map_func(storage, location):
return storage.cuda(1)
if os.path.isfile(path):
print("=> loading checkpoint '{}'".format(path))
checkpoint = torch.load(path, map_location=map_func)
# fix size mismatch error
ignore_keys = []
state_dict = checkpoint[key]
for k, v in state_dict.items():
if k in model.state_dict().keys():
v_dst = model.state_dict()[k]
if v.shape != v_dst.shape:
ignore_keys.append(k)
print(
"caution: size-mismatch key: {} size: {} -> {}".format(
k, v.shape, v_dst.shape
)
)
for k in ignore_keys:
checkpoint.pop(k)
model.load_state_dict(state_dict, strict=False)
ckpt_keys = set(state_dict.keys())
own_keys = set(model.state_dict().keys())
missing_keys = own_keys - ckpt_keys
for k in missing_keys:
print("caution: missing keys from checkpoint {}: {}".format(path, k))
if optimizer is not None:
last_iter = checkpoint["epoch"]
proto_w = checkpoint["pro_w"]
proto_s = checkpoint["pro_s"]
optimizer.load_state_dict(checkpoint["optimizer_state_dict"])
print(
"=> also loaded optimizer from checkpoint '{}' (epoch {})".format(
path, last_iter
)
)
return last_iter,proto_w,proto_s
else:
print("=> no checkpoint found at '{}'".format(path))
def main():
"""Create the model and start the training."""
#prototype_memory_W1 = PrototypeMemory(256, args.num_classes,resume='./test/8_city/pro')
prototype_memory_W1 = PrototypeMemory(256, args.num_classes,resume1='./test/8_voc/sup')
prototype_memory_W2 = PrototypeMemory(256, args.num_classes,resume2='./test/8_voc/sup')
w, h = map(int, args.input_size.split(','))
args.input_size = (w, h)
w, h = map(int, args.crop_size.split(','))
args.crop_size = (w, h)
model = DeeplabMulti(num_classes=args.num_classes, use_se=args.use_se, train_bn=args.train_bn,
norm_style=args.norm_style, droprate=args.droprate)
last_iter = 0
if args.restore_from[:4] == 'http' :
saved_state_dict = model_zoo.load_url(args.restore_from)
else:
saved_state_dict = torch.load(args.restore_from)
new_params = model.state_dict().copy()
for name, param in new_params.items():
if name in saved_state_dict and param.size() == saved_state_dict[name].size():
new_params[name].copy_(saved_state_dict[name])
model.load_state_dict(new_params)
model = model.cuda(1)
model.train()
gen_opt = optim.SGD(model.optim_parameters(args),
lr=args.learning_rate, momentum=args.momentum, nesterov=True, weight_decay=args.weight_decay)
args.resume = False
if args.resume:
#saved_state_dict = torch.load(args.restore_from)
lastest_model = os.path.join('./test/20_voc/pro', "last.pth")
last_iter, prototype_memory_W1,prototype_memory_W2 = load_state(
lastest_model, model, optimizer=gen_opt, key="model_state_dict"
)
#model = torch.load(args.resume)
if args.dataset =='pascal_voc':
train_dataset = VOCDataSet(args.data_dir, args.ldata_list,
crop_size=args.crop_size,
scale=True, mirror=False, mean=IMG_MEAN, augment=False, flip=False)
train_dataset_remain = VOCPDataSet(args.data_dir, args.uldata_list,
crop_size=args.crop_size,
scale=True, mirror=False, mean=IMG_MEAN, augment=False, flip=False)
elif args.dataset == 'cityscapes':
train_dataset = cityscapesDataSet(args.data_dir, args.ldata_list,
crop_size=args.crop_size,set=args.set,
scale=True, mirror=False, mean=IMG_MEAN, augment=False, flip=True)
train_dataset_remain = cityscapesDataSet(args.data_dir, args.uldata_list,
crop_size=args.crop_size,set=args.set,
scale=True, mirror=False, mean=IMG_MEAN, augment=False, flip=True)
trainloader = data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers,
pin_memory=True, drop_last=True)
trainloader_remain = data.DataLoader(train_dataset_remain, batch_size=args.batch_size, shuffle=True,
num_workers=args.num_workers,
pin_memory=True, drop_last=True)
trainloader_iter = iter(trainloader)
trainloader_remain_iter = iter(trainloader_remain)
interp = nn.Upsample(size=args.crop_size, mode='bilinear', align_corners=True)
interp_ = nn.Upsample(size=args.input_size, mode='bilinear', align_corners=True)
seg_loss = nn.CrossEntropyLoss(ignore_index=255)
sm = torch.nn.Softmax(dim=1)
kl_loss = nn.KLDivLoss(size_average=False)
log_sm = torch.nn.LogSoftmax(dim=1)
best_mIoU = 0
filename = os.path.join(SAVE_PATH, 'result.txt')
for i_iter in range(last_iter,args.num_steps):
loss_seg_value1 = 0
loss_seg_value2 = 0
adjust_learning_rate(gen_opt, i_iter, args)
for sub_i in range(args.iter_size):
try:
batch = next(trainloader_iter)
except:
trainloader_iter=iter(trainloader)
batch = next(trainloader_iter)
try:
batch_remain = next(trainloader_remain_iter)
except:
trainloader_remain_iter = iter(trainloader_remain)
batch_remain = next(trainloader_remain_iter)
images, labels, _, _ = batch
images = images.cuda(1)
labels = labels.long().cuda(1)
b, H, W = labels.size()
images_remain_W,pseudo_label, _, _ = batch_remain
images_remain_W = images_remain_W.cuda(1)
pseudo_label = pseudo_label.long().cuda(1)
#print(pseudo_label)
with Timer("Elapsed time in update: %f"):
gen_opt.zero_grad()
pred1, pred2,features1, features2= model(images)
b, n, h_d, w_d = pred1.size()
pred1 = interp(pred1)
pred2 = interp(pred2)
loss_seg1 = seg_loss(pred1, labels)
loss_seg2 = seg_loss(pred2, labels)
loss = loss_seg2 + 0.4 * loss_seg1 # 有标签损失
pred_remain1_W, pred_remain2_W,features1_W, features2_W = model(images_remain_W)
pred_remain1_W = interp(pred_remain1_W)
pred_remain2_W = interp(pred_remain2_W)
b,n,h_crop,w_crop = pred_remain2_W.size()
logits1 = nn.functional.softmax(pred_remain1_W.clone(), dim=1)
max_values_1, max_ids_1 = torch.max(logits1, dim=1)
max_ids_1[max_values_1<0.85]=255
logits2 = nn.functional.softmax(pred_remain2_W.clone(), dim=1)
max_values_2, max_ids_2 = torch.max(logits2, dim=1)
max_ids_2[max_values_2 < 0.85] = 255
# max_ids[max_values<0.9]=255
label_u_down_1 = nn.functional.interpolate(max_ids_1.clone().float().unsqueeze(1),
size=(h_d, w_d),
mode='nearest').squeeze(1).long()
label_u_down_2 = nn.functional.interpolate(max_ids_2.clone().float().unsqueeze(1),
size=(h_d, w_d),
mode='nearest').squeeze(1).long()
label_u_down_1 = label_u_down_1.contiguous().view(b * h_d * w_d, )
label_u_down_2 = label_u_down_2.contiguous().view(b * h_d * w_d, )
features1_W = features1_W.contiguous().view(b * h_d * w_d, 256)
features2_W = features2_W.contiguous().view(b * h_d * w_d, 256)
prototype_memory_W1.update_prototype(features1_W, label_u_down_1)
prototype_memory_W2.update_prototype(features2_W, label_u_down_2)
prototype_W1 = prototype_memory_W1.get_prototype_all_torch().detach().cuda(1)
prototype_W1 = F.normalize(prototype_W1, p=2, dim=1)
prototype_W2 = prototype_memory_W2.get_prototype_all_torch().detach().cuda(1)
prototype_W2 = F.normalize(prototype_W2, p=2, dim=1)
features1_W = F.normalize(features1_W, p=2, dim=1)
features2_W = F.normalize(features2_W, p=2, dim=1)
pseudo_label_down = nn.functional.interpolate(pseudo_label.clone().float().unsqueeze(1),
size=(h_d, w_d),
mode='nearest').squeeze(1).long()
pseudo_label_down = pseudo_label_down.view(b*h_d * w_d)
mask = (pseudo_label_down!=255)
pseudo_label_down = pseudo_label_down[mask]
pos1 = prototype_W1[pseudo_label_down]
neg1 = prototype_W1
features1_W = features1_W[mask]
A1 = torch.exp(torch.sum(features1_W * pos1, dim=-1))
A2 = torch.sum(torch.exp(torch.matmul(features1_W, neg1.transpose(0, 1))), dim=-1)
nce1 = (A1 / A2)
#nce1 = nce1.reshape(b, h_d, w_d)
pos2 = prototype_W2[pseudo_label_down]
neg2 = prototype_W2
features2_W = features2_W[mask]
A3 = torch.exp(torch.sum(features2_W * pos2, dim=-1))
A4 = torch.sum(torch.exp(torch.matmul(features2_W, neg2.transpose(0, 1))), dim=-1)
nce2 = (A3 / A4)
prototype_loss_W1 = nce1 * seg_loss(pred_remain1_W, pseudo_label)
prototype_loss_W2 = nce2 * seg_loss(pred_remain2_W, pseudo_label)
prototype_loss_W1 = torch.mean(prototype_loss_W1)
prototype_loss_W2 = torch.mean(prototype_loss_W2)
prototype_loss_W = 0.4 * prototype_loss_W1 + prototype_loss_W2
loss = loss + prototype_loss_W
if args.fp16:
with amp.scale_loss(loss, gen_opt) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
gen_opt.step()
loss_seg_value1 += loss_seg1.item() / args.iter_size
loss_seg_value2 += loss_seg2.item() / args.iter_size
#loss_me_value = loss_u
del pred1, pred2, pred_remain1_W, pred_remain2_W, features1_W, features2_W
if args.tensorboard:
scalar_info = {
'loss_seg1': loss_seg_value1,
'loss_seg2': loss_seg_value2,
#'loss_me_target': loss_me_value,
'prototype_loss_W1': prototype_loss_W1,
'prototype_loss_W2': prototype_loss_W2,
#'loss_kl_target': loss_kl,
#'val_loss': val_loss,
}
print('exp = {}'.format(args.snapshot_dir))
print(
'\033[1m iter = %8d/%8d \033[0m loss_seg1 = %.4f loss_seg2 = %.4f prototype_loss_w1 = %.4f prototype_loss_w2 = %.4f' % (
i_iter, args.num_steps, loss_seg_value1, loss_seg_value2, prototype_loss_W1,prototype_loss_W2,
))
del loss_seg1, loss_seg2, prototype_loss_W1,prototype_loss_W2
#del loss_seg1, loss_seg2
if i_iter >= args.num_steps_stop - 1:
print('save model ...')
path = osp.join(args.snapshot_dir, 'VOC_' + str(args.num_steps_stop) + '.pth')
check_point = {
"epoch": i_iter,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": gen_opt.state_dict(),
"pro_w": prototype_memory_W1,
"pro_s": prototype_memory_W2
}
torch.save(check_point,path
)
break
if i_iter % args.save_pred_every == 0 and i_iter != 0:
print('taking snapshot ...')
path = osp.join(args.snapshot_dir, 'last.pth')
check_point = {
"epoch": i_iter,
"model_state_dict": model.state_dict(),
"optimizer_state_dict": gen_opt.state_dict(),
"pro_w": prototype_memory_W1,
"pro_s": prototype_memory_W2
}
torch.save(check_point, path
)
if i_iter % 1000 == 0 and i_iter != 0:
model.eval()
if args.dataset =='pascal_voc':
test_dataset = VOCDataSet(args.data_dir, args.val_data_list, args.input_size,
scale=False, mirror=False, mean=IMG_MEAN, augment=False, flip=False)
elif args.dataset == 'cityscapes':
test_dataset = cityscapesDataSet(args.data_dir, args.val_data_list, args.crop_size,
scale=False, mirror=False, mean=IMG_MEAN, augment=False, flip=False)
testloader = data.DataLoader(test_dataset, batch_size=1, shuffle=False,
num_workers=args.num_workers,
pin_memory=True)
iou_t = torch.zeros(args.num_classes, args.num_classes).cuda(1)
for index, batch in enumerate(testloader):
image, label, size, name = batch
with torch.no_grad():
output1, output2,_,_ = model(Variable(image).cuda(1))
output= interp_(output2)
label_cuda = Variable(label.long()).cuda(1)
iou_t, iou, mean_iou = online_meaniou(output, label_cuda, iou_t)
print(iou)
print(mean_iou)
if filename:
with open(filename, 'a') as f:
f.write('iter:' + str(i_iter) + '\n')
f.write('meanIOU: ' + str(iou) + '\n')
f.write('meanIOU: ' + str(mean_iou) + '\n')
if mean_iou > best_mIoU:
best_mIoU = mean_iou
path = osp.join(args.snapshot_dir, f'best_model.pth')
# torch.save({'state_dict': model.state_dict(), 'epoch': i_iter, 'optimizer': gen_opt.state_dict()}, path)
torch.save(model.state_dict(), path)
# if args.tensorboard:
# writer.close()
if __name__ == '__main__':
main()