-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaprp_extension_hjkim.m
271 lines (238 loc) · 16.3 KB
/
aprp_extension_hjkim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
function [dswtoa dswsfc] = aprp_extension_hjkim(rsdsm1,rsusm1,rsutm1,rsdtm1,rsutcsm1,rsdscsm1,rsuscsm1,cltm1, ...
rsdsm2,rsusm2,rsutm2,rsdtm2,rsutcsm2,rsdscsm2,rsuscsm2,cltm2, ...
lon,lat, ...
flag_model,ar,rr)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Extended versions of APRP method of Taylor et al., 2007 (https://journals.ametsoc.org/view/journals/clim/20/11/jcli4143.1.xml) %%
%% Contact : Hanjun Kim ([email protected]) %%
%% All input data should be seasonal data %%
%% In this version of APRP method, surface flux components are added and one-layer radiation model could be customized using the parameters %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ----------------------------------- Parameter to customize the one-layer radiation model -----------------------------------%
% %
% flag_model = 1 : multiple absorption model (Addition of multiple absorption to Taylor's model) %
% flag_model = 2 : multiple absorption model (reflection and absorption at the same time, idea from Donohoe and Battisti, 2011) %
% %
% ar : ratio of upward beam absorptivity to downward beam absorptivity %
% rr : ratio of upward beam reflectivity to downward beam reflecitivity %
% %
% for original APRP method, use flag_model = 1 / ar = 0 / rr = 1 %
% --------------------------------------------------------------------------------------------------------------------------------%
%% radiative parameters %%
% mu : atmospheric absorption coefficient
% ga : atmospheric scattering coefficient
% a : surface albedo
% consider the unit of clt
if nanmean(nanmean(nanmean(cltm1)))>1; cltm1 = cltm1/100; end;
if nanmean(nanmean(nanmean(cltm2)))>1; cltm2 = cltm2/100; end;
% calculate overcast fluxes for rsds, rsus, rsut
rsdsocm1 = (rsdsm1 - (1-cltm1).*rsdscsm1)./cltm1; rsdsocm2 = (rsdsm2 - (1-cltm2).*rsdscsm2)./cltm2;
rsusocm1 = (rsusm1 - (1-cltm1).*rsuscsm1)./cltm1; rsusocm2 = (rsusm2 - (1-cltm2).*rsuscsm2)./cltm2;
rsutocm1 = (rsutm1 - (1-cltm1).*rsutcsm1)./cltm1; rsutocm2 = (rsutm2 - (1-cltm2).*rsutcsm2)./cltm2;
% treatment for overcast-sky calculations
% erronusly large overcast-sky value for too small clt cases (dividing by small value --> too big values)
% cloud fraction less than 3% is considered as clear-sky
rsdsocm1(find(cltm1<0.03)) = rsdscsm1(find(cltm1<0.03)); rsdsocm2(find(cltm2<0.03)) = rsdscsm2(find(cltm2<0.03));
rsusocm1(find(cltm1<0.03)) = rsuscsm1(find(cltm1<0.03)); rsusocm2(find(cltm2<0.03)) = rsuscsm2(find(cltm2<0.03));
rsutocm1(find(cltm1<0.03)) = rsutcsm1(find(cltm1<0.03)); rsutocm2(find(cltm2<0.03)) = rsutcsm2(find(cltm2<0.03));
% treatment for albedo calculations
% NaN value for no-insolation cases (dividing by small value --> too big values)
smask1 = find(rsdtm1<3); smask2 = find(rsdtm2<3);
a_rsdtm1=rsdtm1; a_rsdtm2=rsdtm2;
a_rsdscsm1=rsdscsm1; a_rsdscsm2=rsdscsm2;
a_rsdsocm1=rsdsocm1; a_rsdsocm2=rsdsocm2;
a_rsdtm1(smask1) = NaN; a_rsdtm2(smask2) = NaN;
a_rsdscsm1(smask1) = NaN; a_rsdscsm2(smask2) = NaN;
a_rsdsocm1(smask1) = NaN; a_rsdsocm2(smask2) = NaN;
% calculate clear- and overcast- sky parameters from one-layer radiation model
aclr1=rsuscsm1./a_rsdscsm1; aoc1=rsusocm1./a_rsdsocm1;
Qclr1=a_rsdscsm1./a_rsdtm1; Qoc1=a_rsdsocm1./a_rsdtm1;
aclr2=rsuscsm2./a_rsdscsm2; aoc2=rsusocm2./a_rsdsocm2;
Qclr2=a_rsdscsm2./a_rsdtm2; Qoc2=a_rsdsocm2./a_rsdtm2;
if flag_model == 1
muclr1=(1-rsutcsm1./a_rsdtm1-Qclr1.*(1-aclr1))./(1+ar.*Qclr1.*aclr1);
muoc1=(1-rsutocm1./a_rsdtm1-Qoc1.*(1-aoc1))./(1+ar.*Qoc1.*aoc1);
gaclr1=(1-muclr1-Qclr1)./(1-muclr1-(1-ar.*muclr1).*rr.*Qclr1.*aclr1);
gaoc1=(1-muoc1-Qoc1)./(1-muoc1-(1-ar.*muoc1).*rr.*Qoc1.*aoc1);
muclr2=(1-rsutcsm2./a_rsdtm2-Qclr2.*(1-aclr2))./(1+ar.*Qclr2.*aclr2);
muoc2=(1-rsutocm2./a_rsdtm2-Qoc2.*(1-aoc2))./(1+ar.*Qoc2.*aoc2);
gaclr2=(1-muclr2-Qclr2)./(1-muclr2-(1-ar.*muclr2).*rr.*Qclr2.*aclr2);
gaoc2=(1-muoc2-Qoc2)./(1-muoc2-(1-ar.*muoc2).*rr.*Qoc2.*aoc2);
elseif flag_model == 2
muclr1=(1-rsutcsm1./a_rsdtm1-Qclr1.*(1-aclr1))./(1+ar.*Qclr1.*aclr1);
muoc1=(1-rsutocm1./a_rsdtm1-Qoc1.*(1-aoc1))./(1+ar.*Qoc1.*aoc1);
gaclr1=(1-Qclr1-muclr1)./(1-rr.*Qclr1.*aclr1);
gaoc1=(1-Qoc1-muoc1)./(1-rr.*Qoc1.*aoc1);
muclr2=(1-rsutcsm2./a_rsdtm2-Qclr2.*(1-aclr2))./(1+ar.*Qclr2.*aclr2);
muoc2=(1-rsutocm2./a_rsdtm2-Qoc2.*(1-aoc2))./(1+ar.*Qoc2.*aoc2);
gaclr2=(1-Qclr2-muclr2)./(1-rr.*Qclr2.*aclr2);
gaoc2=(1-Qoc2-muoc2)./(1-rr.*Qoc2.*aoc2);
end
% calculating cloud parameters through clear sky and overcast parameters
mucld1=(muoc1-1)./(1-muclr1)+1; gacld1=(gaoc1-1)./(1-gaclr1)+1;
mucld2=(muoc2-1)./(1-muclr2)+1; gacld2=(gaoc2-1)./(1-gaclr2)+1;
% decomposition of swtoa and swsfc change into several components (downward positive)
% dswtoa = ds*(1-A) - S*dA , dswsfc = ds*Qs*(1-a) - S*Qs*da + S*dQs*(1-a)
% insolation
S = (rsdtm1 + rsdtm2)/2;
dS = rsdtm2 - rsdtm1;
% surface albedo
a = ((rsusm1./rsdsm1) + (rsusm2./rsdsm2))/2;
da = (rsusm2./rsdsm2) - (rsusm1./rsdsm1);
% calculate A (albedo) using the one-layer raidation model (use the attached functions)
A = ((rsutm1./rsdtm1) + (rsutm2./rsdtm2))/2;
A_1=albedo(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr); A_2=albedo(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr);
dA.dc= 0.5*(albedo(cltm2,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm1,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr)) ;
dA.aclr= 0.5*(albedo(cltm1,aclr2,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr1,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr)) ;
dA.aoc= 0.5*(albedo(cltm1,aclr1,aoc2,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr2,aoc1,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr)) ;
dA.mucld= 0.5*(albedo(cltm1,aclr1,aoc1,muclr1,mucld2,gaclr1,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr2,aoc2,muclr2,mucld1,gaclr2,gacld2,flag_model,ar,rr)) ;
dA.muclr= 0.5*(albedo(cltm1,aclr1,aoc1,muclr2,mucld1,gaclr1,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr2,aoc2,muclr1,mucld2,gaclr2,gacld2,flag_model,ar,rr)) ;
dA.gacld= 0.5*(albedo(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld2,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld1,flag_model,ar,rr)) ;
dA.gaclr= 0.5*(albedo(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr2,gacld1,flag_model,ar,rr)-A_1)+0.5*(A_2-albedo(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr1,gacld2,flag_model,ar,rr)) ;
dA.sum = dA.dc + dA.aclr + dA.aoc + dA.mucld + dA.muclr +dA.gacld + dA.gaclr;
dA.total= A_2 - A_1 ;
dA.model = (rsutm2./rsdtm2) - (rsutm1./rsdtm1);
% calculate Qs (incident sw) using one-layer raidation model (use the attached functions)
Qs = ((rsdsm1./rsdtm1) + (rsdsm2./rsdtm2))/2;
Qs_1=incident_sw_ratio(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr); Qs_2=incident_sw_ratio(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr);
dQs.dc= 0.5*(incident_sw_ratio(cltm2,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm1,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr));
dQs.aclr= 0.5*(incident_sw_ratio(cltm1,aclr2,aoc1,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr1,aoc2,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr));
dQs.aoc= 0.5*(incident_sw_ratio(cltm1,aclr1,aoc2,muclr1,mucld1,gaclr1,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr2,aoc1,muclr2,mucld2,gaclr2,gacld2,flag_model,ar,rr));
dQs.mucld= 0.5*(incident_sw_ratio(cltm1,aclr1,aoc1,muclr1,mucld2,gaclr1,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr2,aoc2,muclr2,mucld1,gaclr2,gacld2,flag_model,ar,rr));
dQs.muclr= 0.5*(incident_sw_ratio(cltm1,aclr1,aoc1,muclr2,mucld1,gaclr1,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr2,aoc2,muclr1,mucld2,gaclr2,gacld2,flag_model,ar,rr));
dQs.gacld= 0.5*(incident_sw_ratio(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr1,gacld2,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr2,gacld1,flag_model,ar,rr));
dQs.gaclr= 0.5*(incident_sw_ratio(cltm1,aclr1,aoc1,muclr1,mucld1,gaclr2,gacld1,flag_model,ar,rr)-Qs_1)+0.5*(Qs_2-incident_sw_ratio(cltm2,aclr2,aoc2,muclr2,mucld2,gaclr1,gacld2,flag_model,ar,rr));
dQs.sum = dQs.dc + dQs.aclr + dQs.aoc + dQs.mucld + dQs.muclr + dQs.gacld + dQs.gaclr;
dQs.total= Qs_2 - Qs_1;
dQs.model = (rsdsm2./rsdtm2) - (rsdsm1./rsdtm1);
% calculate sw change directly from model output
dswtoa.model = (rsdtm2-rsutm2) - (rsdtm1-rsutm1);
dswsfc.model = (rsdsm2-rsusm2) - (rsdsm1-rsusm1);
% assign each component (downward positive for both TOA and SFC)
% note that region with insufficient insolation has no change (0 values) (all NaN value become 0 here)
% TOA --> sum = ds + cld + clr + alb
dswtoa.ds = dS.*(1-A); dswtoa.ds(smask1) = 0; dswtoa.ds(smask2) = 0;
dswtoa.A_dc = -S.*dA.dc; dswtoa.A_dc(smask1) = 0; dswtoa.A_dc(smask2) = 0;
dswtoa.A_aclr = -S.*dA.aclr; dswtoa.A_aclr(smask1) = 0; dswtoa.A_aclr(smask2) = 0;
dswtoa.A_aoc = -S.*dA.aoc; dswtoa.A_aoc(smask1) = 0; dswtoa.A_aoc(smask2) = 0;
dswtoa.A_mucld = -S.*dA.mucld; dswtoa.A_mucld(smask1) = 0; dswtoa.A_mucld(smask2) = 0;
dswtoa.A_muclr = -S.*dA.muclr; dswtoa.A_muclr(smask1) = 0; dswtoa.A_muclr(smask2) = 0;
dswtoa.A_gacld = -S.*dA.gacld; dswtoa.A_gacld(smask1) = 0; dswtoa.A_gacld(smask2) = 0;
dswtoa.A_gaclr = -S.*dA.gaclr; dswtoa.A_gaclr(smask1) = 0; dswtoa.A_gaclr(smask2) = 0;
dswtoa.cld = dswtoa.A_dc + dswtoa.A_mucld + dswtoa.A_gacld;
dswtoa.ncld = dswtoa.A_muclr + dswtoa.A_gaclr;
dswtoa.alb = dswtoa.A_aclr + dswtoa.A_aoc;
dswtoa.sum = dswtoa.ds + dswtoa.cld + dswtoa.ncld + dswtoa.alb;
% if the change is larger than 100, we will consider it as abnormal value --> (it occur hardly)
dswtoa.ds(dswtoa.ds>100|dswtoa.ds<-100)=NaN;
dswtoa.A_dc(dswtoa.A_dc>100|dswtoa.A_dc<-100)=NaN;
dswtoa.A_aclr(dswtoa.A_aclr>100|dswtoa.A_aclr<-100)=NaN;
dswtoa.A_aoc(dswtoa.A_aoc>100|dswtoa.A_aoc<-100)=NaN;
dswtoa.A_mucld(dswtoa.A_mucld>100|dswtoa.A_mucld<-100)=NaN;
dswtoa.A_muclr(dswtoa.A_muclr>100|dswtoa.A_muclr<-100)=NaN;
dswtoa.A_gacld(dswtoa.A_gacld>100|dswtoa.A_gacld<-100)=NaN;
dswtoa.A_gacld(dswtoa.A_gacld>100|dswtoa.A_gacld<-100)=NaN;
dswtoa.cld(dswtoa.cld>100|dswtoa.cld<-100)=NaN;
dswtoa.ncld(dswtoa.ncld>100|dswtoa.ncld<-100)=NaN;
dswtoa.alb(dswtoa.alb>100|dswtoa.alb<-100)=NaN;
dswtoa.sum(dswtoa.sum>100|dswtoa.sum<-100)=NaN;
% SFC --> sum = ds + cld + clr + alb
dswsfc.ds = dS.*Qs.*(1-a); dswsfc.ds(smask1) = 0; dswsfc.ds(smask2) = 0;
dswsfc.da = -S.*Qs.*da; dswsfc.da(smask1) = 0; dswsfc.da(smask2) = 0;
dswsfc.Qs_dc = S.*dQs.dc.*(1-a); dswsfc.Qs_dc(smask1) = 0; dswsfc.Qs_dc(smask2) = 0;
dswsfc.Qs_aclr = S.*dQs.aclr.*(1-a); dswsfc.Qs_aclr(smask1) = 0; dswsfc.Qs_aclr(smask2) = 0;
dswsfc.Qs_aoc = S.*dQs.aoc.*(1-a); dswsfc.Qs_aoc(smask1) = 0; dswsfc.Qs_aoc(smask2) = 0;
dswsfc.Qs_mucld = S.*dQs.mucld.*(1-a); dswsfc.Qs_mucld(smask1) = 0; dswsfc.Qs_mucld(smask2) = 0;
dswsfc.Qs_muclr = S.*dQs.muclr.*(1-a); dswsfc.Qs_muclr(smask1) = 0; dswsfc.Qs_muclr(smask2) = 0;
dswsfc.Qs_gacld = S.*dQs.gacld.*(1-a); dswsfc.Qs_gacld(smask1) = 0; dswsfc.Qs_gacld(smask2) = 0;
dswsfc.Qs_gaclr = S.*dQs.gaclr.*(1-a); dswsfc.Qs_gaclr(smask1) = 0; dswsfc.Qs_gaclr(smask2) = 0;
dswsfc.cld = dswsfc.Qs_dc + dswsfc.Qs_mucld + dswsfc.Qs_gacld;
dswsfc.ncld = dswsfc.Qs_muclr + dswsfc.Qs_gaclr;
dswsfc.alb = dswsfc.da + dswsfc.Qs_aclr + dswsfc.Qs_aoc;
dswsfc.sum = dswsfc.ds + dswsfc.cld + dswsfc.ncld + dswsfc.alb;
% if the change is larger than 100, we will consider it as abnormal value --> (it occur hardly)
dswsfc.ds(dswsfc.ds>100|dswsfc.ds<-100)=NaN;
dswsfc.da(dswsfc.da>100|dswsfc.da<-100)=NaN;
dswsfc.Qs_dc(dswsfc.Qs_dc>100|dswsfc.Qs_dc<-100)=NaN;
dswsfc.Qs_aclr(dswsfc.Qs_aclr>100|dswsfc.Qs_aclr<-100)=NaN;
dswsfc.Qs_aoc(dswsfc.Qs_aoc>100|dswsfc.Qs_aoc<-100)=NaN;
dswsfc.Qs_mucld(dswsfc.Qs_mucld>100|dswsfc.Qs_mucld<-100)=NaN;
dswsfc.Qs_muclr(dswsfc.Qs_muclr>100|dswsfc.Qs_muclr<-100)=NaN;
dswsfc.Qs_gacld(dswsfc.Qs_gacld>100|dswsfc.Qs_gacld<-100)=NaN;
dswsfc.Qs_gaclr(dswsfc.Qs_gaclr>100|dswsfc.Qs_gaclr<-100)=NaN;
dswsfc.cld(dswsfc.cld>100|dswsfc.cld<-100)=NaN;
dswsfc.ncld(dswsfc.ncld>100|dswsfc.ncld<-100)=NaN;
dswsfc.alb(dswsfc.alb>100|dswsfc.alb<-100)=NaN;
dswsfc.sum(dswsfc.sum>100|dswsfc.sum<-100)=NaN;
%% get global-mean value to check whether the global-mean model SW changes are corresponding to APRP sum or not
% area weighting
if size(lat,2) > 10; lat = lat'; end;
if size(lon,2) > 10; lon = lon'; end;
a = 6371e3; nlat = length(lat); nlon = length(lon');
dx = a * repmat(cosd(lat),[1 nlon]) .* deg2rad(repmat(gradient(lon'),[nlat 1]));
dy = a * deg2rad(repmat(gradient(lat),[1 nlon]));
aw = dx.*dy; % [m^2] area weight
awtr = repmat(reshape(aw,[1 nlat nlon]),[12 1 1]);
dswtoa.sum(isnan(dswtoa.sum)) = 0; awt = awtr; awt(isnan(dswtoa.sum))=0;
dswtoa.model(isnan(dswtoa.model)) = 0; awt = awtr; awt(isnan(dswtoa.model))=0;
dswsfc.sum(isnan(dswsfc.sum)) = 0; awt = awtr; awt(isnan(dswsfc.sum))=0;
dswsfc.model(isnan(dswsfc.model)) = 0; awt = awtr; awt(isnan(dswsfc.model))=0;
% global mean value for validations
gmtoasum = mean(sum(sum(dswtoa.sum.*awt,2),3)./sum(sum(awt,2),3),1);
gmtoamodel = mean(sum(sum(dswtoa.model.*awt,2),3)./sum(sum(awt,2),3),1);
gmsfcsum = mean(sum(sum(dswsfc.sum.*awt,2),3)./sum(sum(awt,2),3),1);
gmsfcmodel = mean(sum(sum(dswsfc.model.*awt,2),3)./sum(sum(awt,2),3),1);
display([ 'TOA_{sum,model} : ' num2str(gmtoasum,'%10.3f') ',' num2str(gmtoamodel,'%10.3f') ' / SFC_{sum,model} : ' num2str(gmsfcsum,'%10.3f') ',' num2str(gmsfcmodel,'%10.3f') ])
end
% % validation figure (optional)
% load coast_hjkim.mat;
% b=10; nc=40;
% figure('Position',[10 10 1800 900]);
% subplot(2,3,1);
% contourf(lon,lat,squeeze(mean(dswtoa.sum,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{TOA} : APRP');
% subplot(2,3,2);
% contourf(lon,lat,squeeze(mean(dswtoa.cld,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{TOA} : cloud');
% subplot(2,3,3);
% contourf(lon,lat,squeeze(mean(dswtoa.ncld,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{TOA} : non-cloud');
% subplot(2,3,4);
% contourf(lon,lat,squeeze(mean(dswtoa.alb,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{TOA} : albedo');
% subplot(2,3,5);
% contourf(lon,lat,squeeze(mean(dswtoa.sum-dswtoa.model,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{TOA} : APRP-model');
% subplot(2,3,6);
% contourf(lon,lat,squeeze(mean(dswsfc.sum-dswsfc.model,1)),linspace(-3*b,3*b,3*nc+1),'linestyle','none'); hold on;
% plot(lonmap+360,latmap,'k');
% plot(lonmap,latmap,'k');
% xlim([2 358]);
% colormap(french(nc)); colorbar;
% caxis([-b b]);
% title('\DeltaSW_{SFC} : APRP-model');