-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathmodel.py
330 lines (259 loc) · 13.7 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import os
import time
import numpy as np
import tensorflow as tf
from ops import *
'''
cppgan-vae
compositional pattern-producing generative adversarial network combined with variational autoencoder
I learned a lot from studying the below pages:
https://github.com/carpedm20/DCGAN-tensorflow
https://jmetzen.github.io/2015-11-27/vae.html
it wouldn't have been possible without referencing those two guy's code!
Description of CPPNs:
https://en.wikipedia.org/wiki/Compositional_pattern-producing_network
'''
class CPPNVAE():
def __init__(self, batch_size=1, z_dim=32,
x_dim = 26, y_dim = 26, c_dim = 1, scale = 8.0,
learning_rate= 0.01, learning_rate_d= 0.001, learning_rate_vae = 0.0001, beta1 = 0.9, net_size_g = 128, net_depth_g = 4,
net_size_q = 512, keep_prob = 1.0, df_dim = 24, model_name = "cppnvae"):
"""
Args:
z_dim dimensionality of the latent vector
x_dim, y_dim default resolution of generated images for training
c_dim 1 for monotone, 3 for colour
learning_rate learning rate for the generator
_d learning rate for the discriminiator
_vae learning rate for the variational autoencoder
net_size_g number of activations per layer for cppn generator function
net_depth_g depth of generator
net_size_q number of activations per layer for decoder (real image -> z). 2 layers.
df_dim discriminiator is a convnet. higher -> more activtions -> smarter.
keep_prob dropout probability
when training, use I used dropout on training the decoder, batch norm on discriminator, nothing on cppn
choose training parameters so that over the long run, decoder and encoder log errors hover around 0.7 each (so they are at the same skill level)
while the error for vae should slowly move lower over time with D and G balanced.
"""
self.batch_size = batch_size
self.learning_rate = learning_rate
self.learning_rate_d = learning_rate_d
self.learning_rate_vae = learning_rate_vae
self.beta1 = beta1
self.net_size_g = net_size_g
self.net_size_q = net_size_q
self.x_dim = x_dim
self.y_dim = y_dim
self.scale = scale
self.c_dim = c_dim
self.z_dim = z_dim
self.net_depth_g = net_depth_g
self.model_name = model_name
self.keep_prob = keep_prob
self.df_dim = df_dim
# tf Graph batch of image (batch_size, height, width, depth)
self.batch = tf.placeholder(tf.float32, [batch_size, x_dim, y_dim, c_dim])
self.batch_flatten = tf.reshape(self.batch, [batch_size, -1])
n_points = x_dim * y_dim
self.n_points = n_points
self.x_vec, self.y_vec, self.r_vec = self.coordinates(x_dim, y_dim, scale)
# latent vector
# self.z = tf.placeholder(tf.float32, [self.batch_size, self.z_dim])
# inputs to cppn, like coordinates and radius from centre
self.x = tf.placeholder(tf.float32, [self.batch_size, None, 1])
self.y = tf.placeholder(tf.float32, [self.batch_size, None, 1])
self.r = tf.placeholder(tf.float32, [self.batch_size, None, 1])
# batch normalization : deals with poor initialization helps gradient flow
self.d_bn1 = batch_norm(batch_size, name=self.model_name+'_d_bn1')
self.d_bn2 = batch_norm(batch_size, name=self.model_name+'_d_bn2')
# Use recognition network to determine mean and
# (log) variance of Gaussian distribution in latent
# space
self.z_mean, self.z_log_sigma_sq = self.encoder()
# Draw one sample z from Gaussian distribution
eps = tf.random_normal((self.batch_size, self.z_dim), 0, 1, dtype=tf.float32)
# z = mu + sigma*epsilon
self.z = tf.add(self.z_mean, tf.mul(tf.sqrt(tf.exp(self.z_log_sigma_sq)), eps))
# Use generator to determine mean of
# Bernoulli distribution of reconstructed input
self.G = self.generator()
self.batch_reconstruct_flatten = tf.reshape(self.G, [batch_size, -1])
self.D_right = self.discriminator(self.batch) # discriminiator on correct examples
self.D_wrong = self.discriminator(self.G, reuse=True) # feed generated images into D
self.create_vae_loss_terms()
self.create_gan_loss_terms()
self.balanced_loss = 1.0 * self.g_loss + 1.0 * self.vae_loss # can try to weight these.
self.t_vars = tf.trainable_variables()
self.q_vars = [var for var in self.t_vars if (self.model_name+'_q_') in var.name]
self.g_vars = [var for var in self.t_vars if (self.model_name+'_g_') in var.name]
self.d_vars = [var for var in self.t_vars if (self.model_name+'_d_') in var.name]
self.vae_vars = self.q_vars+self.g_vars
# Use ADAM optimizer
self.d_opt = tf.train.AdamOptimizer(self.learning_rate_d, beta1=self.beta1) \
.minimize(self.d_loss, var_list=self.d_vars)
self.g_opt = tf.train.AdamOptimizer(self.learning_rate, beta1=self.beta1) \
.minimize(self.balanced_loss, var_list=self.vae_vars)
self.vae_opt = tf.train.AdamOptimizer(self.learning_rate_vae, beta1=self.beta1) \
.minimize(self.vae_loss, var_list=self.vae_vars)
# Initializing the tensor flow variables
init = tf.initialize_all_variables()
# Launch the session
self.sess = tf.InteractiveSession()
self.sess.run(init)
self.saver = tf.train.Saver(tf.all_variables())
def create_vae_loss_terms(self):
# The loss is composed of two terms:
# 1.) The reconstruction loss (the negative log probability
# of the input under the reconstructed Bernoulli distribution
# induced by the decoder in the data space).
# This can be interpreted as the number of "nats" required
# for reconstructing the input when the activation in latent
# is given.
# Adding 1e-10 to avoid evaluatio of log(0.0)
reconstr_loss = \
-tf.reduce_sum(self.batch_flatten * tf.log(1e-10 + self.batch_reconstruct_flatten)
+ (1-self.batch_flatten) * tf.log(1e-10 + 1 - self.batch_reconstruct_flatten), 1)
# 2.) The latent loss, which is defined as the Kullback Leibler divergence
## between the distribution in latent space induced by the encoder on
# the data and some prior. This acts as a kind of regularizer.
# This can be interpreted as the number of "nats" required
# for transmitting the the latent space distribution given
# the prior.
latent_loss = -0.5 * tf.reduce_sum(1 + self.z_log_sigma_sq
- tf.square(self.z_mean)
- tf.exp(self.z_log_sigma_sq), 1)
self.vae_loss = tf.reduce_mean(reconstr_loss + latent_loss) / self.n_points # average over batch and pixel
def create_gan_loss_terms(self):
# Define loss function and optimiser
self.d_loss_real = binary_cross_entropy_with_logits(tf.ones_like(self.D_right), self.D_right)
self.d_loss_fake = binary_cross_entropy_with_logits(tf.zeros_like(self.D_wrong), self.D_wrong)
self.d_loss = 1.0*(self.d_loss_real + self.d_loss_fake)/ 2.0
self.g_loss = 1.0*binary_cross_entropy_with_logits(tf.ones_like(self.D_wrong), self.D_wrong)
def coordinates(self, x_dim = 32, y_dim = 32, scale = 1.0):
n_pixel = x_dim * y_dim
x_range = scale*(np.arange(x_dim)-(x_dim-1)/2.0)/(x_dim-1)/0.5
y_range = scale*(np.arange(y_dim)-(y_dim-1)/2.0)/(y_dim-1)/0.5
x_mat = np.matmul(np.ones((y_dim, 1)), x_range.reshape((1, x_dim)))
y_mat = np.matmul(y_range.reshape((y_dim, 1)), np.ones((1, x_dim)))
r_mat = np.sqrt(x_mat*x_mat + y_mat*y_mat)
x_mat = np.tile(x_mat.flatten(), self.batch_size).reshape(self.batch_size, n_pixel, 1)
y_mat = np.tile(y_mat.flatten(), self.batch_size).reshape(self.batch_size, n_pixel, 1)
r_mat = np.tile(r_mat.flatten(), self.batch_size).reshape(self.batch_size, n_pixel, 1)
return x_mat, y_mat, r_mat
def show_image(self, image):
'''
image is in [height width depth]
'''
plt.subplot(1, 1, 1)
y_dim = image.shape[0]
x_dim = image.shape[1]
if self.c_dim > 1:
plt.imshow(image, interpolation='nearest')
else:
plt.imshow(image.reshape(y_dim, x_dim), cmap='Greys', interpolation='nearest')
plt.axis('off')
plt.show()
def encoder(self):
# Generate probabilistic encoder (recognition network), which
# maps inputs onto a normal distribution in latent space.
# The transformation is parametrized and can be learned.
H1 = tf.nn.dropout(tf.nn.softplus(linear(self.batch_flatten, self.net_size_q, self.model_name+'_q_lin1')), self.keep_prob)
H2 = tf.nn.dropout(tf.nn.softplus(linear(H1, self.net_size_q, self.model_name+'_q_lin2')), self.keep_prob)
z_mean = linear(H2, self.z_dim, self.model_name+'_q_lin3_mean')
z_log_sigma_sq = linear(H2, self.z_dim, self.model_name+'_q_lin3_log_sigma_sq')
return (z_mean, z_log_sigma_sq)
def discriminator(self, image, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
h0 = lrelu(conv2d(image, self.df_dim, name=self.model_name+'_d_h0_conv'))
h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name=self.model_name+'_d_h1_conv')))
h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name=self.model_name+'_d_h2_conv')))
h3 = linear(tf.reshape(h2, [self.batch_size, -1]), 1, self.model_name+'_d_h2_lin')
return tf.nn.sigmoid(h3)
def generator(self, gen_x_dim = 26, gen_y_dim = 26, reuse = False):
if reuse:
tf.get_variable_scope().reuse_variables()
n_network = self.net_size_g
gen_n_points = gen_x_dim * gen_y_dim
z_scaled = tf.reshape(self.z, [self.batch_size, 1, self.z_dim]) * \
tf.ones([gen_n_points, 1], dtype=tf.float32) * self.scale
z_unroll = tf.reshape(z_scaled, [self.batch_size*gen_n_points, self.z_dim])
x_unroll = tf.reshape(self.x, [self.batch_size*gen_n_points, 1])
y_unroll = tf.reshape(self.y, [self.batch_size*gen_n_points, 1])
r_unroll = tf.reshape(self.r, [self.batch_size*gen_n_points, 1])
U = fully_connected(z_unroll, n_network, self.model_name+'_g_0_z') + \
fully_connected(x_unroll, n_network, self.model_name+'_g_0_x', with_bias = False) + \
fully_connected(y_unroll, n_network, self.model_name+'_g_0_y', with_bias = False) + \
fully_connected(r_unroll, n_network, self.model_name+'_g_0_r', with_bias = False)
H = tf.nn.softplus(U)
for i in range(1, self.net_depth_g):
H = tf.nn.tanh(fully_connected(H, n_network, self.model_name+'_g_tanh_'+str(i)))
output = tf.sigmoid(fully_connected(H, self.c_dim, self.model_name+'_g_'+str(self.net_depth_g)))
result = tf.reshape(output, [self.batch_size, gen_y_dim, gen_x_dim, self.c_dim])
return result
def partial_train(self, batch):
"""Train model based on mini-batch of input data.
Return cost of mini-batch.
I should really seperate the below tricks into parameters, like number of times/pass
and also the regulator threshold levels.
"""
counter = 0
'''
for i in range(4):
counter += 1
_, vae_loss, g_loss = self.sess.run((self.g_opt, self.vae_loss, self.g_loss),
feed_dict={self.batch: batch, self.x: self.x_vec, self.y: self.y_vec, self.r: self.r_vec})
if g_loss < 0.6:
break
'''
for i in range(4):
counter += 1
_, vae_loss = self.sess.run((self.vae_opt, self.vae_loss),
feed_dict={self.batch: batch, self.x: self.x_vec, self.y: self.y_vec, self.r: self.r_vec})
for i in range(4):
counter += 1
_, g_loss = self.sess.run((self.g_opt, self.g_loss),
feed_dict={self.batch: batch, self.x: self.x_vec, self.y: self.y_vec, self.r: self.r_vec})
if g_loss < 0.6:
break
d_loss = self.sess.run(self.d_loss,
feed_dict={self.batch: batch, self.x: self.x_vec, self.y: self.y_vec, self.r: self.r_vec})
if d_loss > 0.6 and g_loss < 0.75:
for i in range(1):
counter += 1
_, d_loss = self.sess.run((self.d_opt, self.d_loss),
feed_dict={self.batch: batch, self.x: self.x_vec, self.y: self.y_vec, self.r: self.r_vec})
if d_loss < 0.6:
break
return d_loss, g_loss, vae_loss, counter
def encode(self, X):
"""Transform data by mapping it into the latent space."""
# Note: This maps to mean of distribution, we could alternatively
# sample from Gaussian distribution
return self.sess.run(self.z_mean, feed_dict={self.batch: X})
def generate(self, z=None, x_dim = 26, y_dim = 26, scale = 5.0):
""" Generate data by sampling from latent space.
If z is not None, data for this point in latent space is
generated. Otherwise, z is drawn from prior in latent
space.
"""
if z is None:
z = np.random.normal(size=self.z_dim).astype(np.float32)
# Note: This maps to mean of distribution, we could alternatively
# sample from Gaussian distribution
z = np.reshape(z, (self.batch_size, self.z_dim))
G = self.generator(gen_x_dim = x_dim, gen_y_dim = y_dim, reuse = True)
gen_x_vec, gen_y_vec, gen_r_vec = self.coordinates(x_dim, y_dim, scale = scale)
image = self.sess.run(G, feed_dict={self.z: z, self.x: gen_x_vec, self.y: gen_y_vec, self.r: gen_r_vec})
return image
def save_model(self, checkpoint_path, epoch):
""" saves the model to a file """
self.saver.save(self.sess, checkpoint_path, global_step = epoch)
def load_model(self, checkpoint_path):
ckpt = tf.train.get_checkpoint_state(checkpoint_path)
print "loading model: ",ckpt.model_checkpoint_path
self.saver.restore(self.sess, checkpoint_path+'/'+ckpt.model_checkpoint_path)
# use the below line for tensorflow 0.7
#self.saver.restore(self.sess, ckpt.model_checkpoint_path)
def close(self):
self.sess.close()