-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract.py
168 lines (138 loc) · 5.43 KB
/
extract.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from flask import Flask, render_template, request, jsonify
from werkzeug.utils import secure_filename
from dateutil.parser import parse
from datetime import datetime
import os
import xlrd
import json
import pandas as pd
def get_bank_values(bank_name):
with open("config.json", "r") as f:
content = json.loads(f.read())
all_banks = content["banks"]
for bank in all_banks:
if bank.get("name") == bank_name.lower():
return bank["header"]
def extract_data_from_statement(file_path):
workbook = xlrd.open_workbook(file_path)
worksheet = workbook.sheet_by_index(0)
data = []
for row in range(worksheet.nrows):
row_data = []
for col in range(worksheet.ncols):
value = worksheet.cell_value(row, col)
if len(str(value).strip()) > 0:
row_data.append(value)
data.append(row_data)
return data
def extract_raw_data_from_statement(file_path):
workbook = xlrd.open_workbook(file_path)
worksheet = workbook.sheet_by_index(0)
data = []
for row in range(worksheet.nrows):
row_data = []
for col in range(worksheet.ncols):
value = worksheet.cell_value(row, col)
row_data.append(value)
data.append(row_data)
return data
def match_headers(headers, data):
header_list_bank = list(headers.values())
header_list = [
header for header in header_list_bank if len(header.strip()) > 0]
for index, values in enumerate(data):
values = [ele.strip() for ele in values if type(ele) == str]
if values == header_list:
return index
def find_end_index(data):
for index, values in enumerate(data):
flag = False
for element in values:
if len(str(element).strip()) > 0:
flag = True
if not flag:
return index
return len(data)
def match_keys(data, headers):
final_headers = []
data_headers = data[0]
for dh in data_headers:
if len(dh.strip()) > 0:
for h in headers:
if headers.get(h) == dh:
final_headers.append(h)
for h in headers:
if not h in final_headers:
final_headers.append(h)
data[0] = final_headers
return data
def is_date(string, fuzzy=False):
try:
parse(string, fuzzy=fuzzy)
return True
except ValueError:
return False
def excel_date_format(json_data):
excel_date = [date["Date"] for date in json_data["data"]]
format_date = is_date(str(excel_date[0]))
formated_date = []
if format_date == False:
for x in excel_date:
if x:
dt = datetime.fromordinal(
datetime(1900, 1, 1).toordinal() + int(x) - 2)
formated_date.append(dt)
return formated_date
else:
return excel_date
def extract_data(bank_name, statement_path):
headers = get_bank_values(bank_name)
data = extract_data_from_statement(statement_path)
start_index = match_headers(headers, data)
end_index = find_end_index(data[start_index:])
print(start_index,end_index)
raw_data = extract_raw_data_from_statement(statement_path)
data = raw_data[start_index:start_index+end_index]
for x in data:
for i, y in enumerate(x):
if y == "":
x[i] = None
df = pd.DataFrame(data, index=None)
df = df.dropna(axis=1, how='all')
data = df.values.tolist()
data = match_keys(data, headers)
df = pd.DataFrame(data)
df.columns = data[0]
df = df[1:]
print(df)
json_data = df.to_json(orient='table', index=False)
json_data = json.loads(json_data)
for x in json_data["data"]:
if (x['Withdrawal Amt.'] == None or not str(x['Withdrawal Amt.']).strip()) == (x['Deposit Amt.'] == None or not str(x['Deposit Amt.']).strip()):
json_data["data"].remove(x)
elif x['Withdrawal Amt.'] == None and x['Deposit Amt.'] == None:
json_data["data"].remove(x)
formated_date = excel_date_format(json_data)
# print(is_date(str(json_data["data"][0]["Date"])))
if is_date(str(json_data["data"][0]["Date"])) == False:
for date, transaction_date in zip(formated_date, json_data["data"]):
transaction_date.update({"Date": date.date(),
"Value Dt": date.date()})
return json_data['data']
statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\data-extraction-from-bankstatement\statements\sbi_statement.xlsx"
bank_name = "SBI"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\hdfc_statement.xls"
# bank_name = "hdfc"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\Indian Bank.xls"
# bank_name = "indian"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\CWS-Bank Of Baroda.xlsx"
# bank_name = "bankofbaroda"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\ICICIOpTransactionHistory13-08-2021.xls"
# bank_name = "icici"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\CWS-Canara Bank.xlsx"
# bank_name = "canara"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\dbs_statement.xls"
# bank_name = "dbs"
# statement_path = r"C:\Users\lenovo\OneDrive - BOT Mantra\Desktop\Bank Statements\CWS-AXIS.xlsx"
# bank_name = "axis"
print(extract_data(bank_name,statement_path))