-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfp_friction.py
executable file
·164 lines (122 loc) · 3.56 KB
/
fp_friction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/sbin/env python
import numpy as np
import matplotlib.pyplot as plt
def i1(u, f, dx):
xs = np.arange(0, 1, dx)
return np.trapz(np.exp(-u(xs) + f * xs), dx=dx)
def i2(x, u, f, dx):
if x == 0.0:
return 0.0
xs = np.arange(0, x, dx)
return np.trapz(np.exp(u(xs) - f*xs), dx=dx)
def i3(u, f, dx):
xs = np.arange(0, 1, dx)
s2s = np.vectorize(i2)(xs, u, f, dx)
return np.trapz(np.exp(-u(xs) + f * xs) * s2s, dx=dx)
def l2(x, u, f, dx):
if x == 0.0:
return 0.0
xs = np.arange(x, 1, dx)
return np.trapz(np.exp(u(xs) - f*xs), dx=dx)
def l3(u, f, dx):
xs = np.arange(0, 1, dx)
s2s = np.vectorize(l2)(xs, u, f, dx)
return np.trapz(np.exp(-u(xs) + f * xs) * s2s, dx=dx)
def u1(x):
beta = 1.0
return - u_hb * ((1.0 - np.cos(2*np.pi*x)) / 2)**beta
def u2(x):
beta = 2.0
return - u_hb * ((1.0 - np.cos(2*np.pi*x)) / 2)**beta
def u10(x):
beta = 10.0
return - u_hb * ((1.0 - np.cos(2*np.pi*x)) / 2)**beta
def u05(x):
beta = 0.5
return - u_hb * ((1.0 - np.cos(2*np.pi*x)) / 2)**beta
def u01(x):
beta = 0.1
return - u_hb * ((1.0 - np.cos(2*np.pi*x)) / 2)**beta
def s(fs, u, dx):
s_ = []
for f in fs:
if f < u_hb:
a = i1(u, f, dx)
c = i2(1.0, u, f, dx)
b = i3(u, f, dx)
s_.append((a * c) / (1.0 - np.exp(-f)) - b)
else:
b = l3(u, f, dx)
s_.append(b)
return np.array(s_)
def s_f(fs, u, dx):
s_ = []
for f in fs:
b = l3(u, f, dx)
s_.append(b)
return np.array(s_)
def log_scaling(v):
v0 = 2 * np.pi * u_hb * np.exp(-u_hb)
print('v0=%s' % str(v0))
return 2 * np.log(v)
def lin_scaling(v):
a = np.exp(u_hb) / np.pi / u_hb
print(a)
return v * a
dx = 0.001
u_hb = 300.0
f_max = 30.0
v0 = 2 * np.pi * u_hb * np.exp(-u_hb)
# print('v0=%s' % str(v0))
num = 1000
f = np.geomspace(f_max/num, f_max, num)
# v01 = 1 / s(f, u01, dx) / v0
# v05 = 1 / s(f, u05, dx) / v0
s1 = s(f, u1, dx)
s2 = s(f, u2, dx)
s10 = s(f, u10, dx)
v1 = 1.0 / s(f, u1, dx) / v0
v2 = 1 / s(f, u2, dx) / v0
v10 = 1 / s(f, u10, dx) / v0
plt.loglog(f, f * s1, label='$\\tilde{U}_{HB}=%d\,\,\, \\beta=%d$' % (u_hb, 1))
plt.loglog(f, f * s2, label='$\\tilde{U}_{HB}=%d\,\,\, \\beta=%d$' % (u_hb, 2))
plt.loglog(f, f * s10, label='$\\tilde{U}_{HB}=%d\,\,\, \\beta=%d$' % (u_hb, 10))
plt.xlabel('$F/F_0$')
plt.ylabel('$\\gamma/\\gamma_0$')
plt.legend()
plt.show()
plt.loglog(v1, log_scaling(v1), label='log')
plt.loglog(v1, lin_scaling(v1 * v0), label='lin')
plt.loglog(v1, f, label='solution $\\beta=$1')
plt.xlabel('$v/v_0$')
plt.ylabel('$F/F_0$')
plt.legend()
plt.show()
# x = np.arange(-1, 1, 0.01)
# plt.plot(x, u01(x) / u_hb, label='U $\\beta=$0.1')
# plt.plot(x, u05(x) / u_hb, label='U $\\beta=$0.5')
# plt.plot(x, u1(x) / u_hb, label='U $\\beta=$1')
# plt.plot(x, u2(x) / u_hb, label='U $\\beta=$2')
# plt.plot(x, u10(x) / u_hb, label='U $\\beta=$10')
# plt.xlabel('$x/a$')
# plt.ylabel('$U/U_{HB}$')
# plt.legend()
# plt.show()
#
plt.loglog(v1, f, label='solution $\\beta=$1')
plt.loglog(v2, f, label='solution $\\beta=$2')
plt.loglog(v10, f, label='solution $\\beta=$10')
plt.xlabel('$v/v_0$')
plt.ylabel('$F/F_0$')
plt.legend()
plt.show()
#
# plt.loglog(f, f/v01, label='solution $\\beta=$0.1')
# plt.loglog(f, f/v05, label='solution $\\beta=$0.5')
# plt.loglog(f, f/v1, label='solution $\\beta=$1')
# plt.loglog(f, f/v2, label='solution $\\beta=$2')
# plt.loglog(f, f/v10, label='solution $\\beta=$10')
# plt.xlabel('$F/F_0$')
# plt.ylabel('$(F/F_0) / (v/V_0)$')
# plt.legend()
# plt.show()