-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
67 lines (56 loc) · 2.29 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# USAGE
# python predict.py --image images/dog.jpg --model output/simple_nn.model --label-bin output/simple_nn_lb.pickle --width 32 --height 32 --flatten 1
# python predict.py --image images/dog.jpg --model output/smallvggnet.model --label-bin output/smallvggnet_lb.pickle --width 64 --height 64
# import the necessary packages
from keras.models import load_model
import argparse
import pickle
import cv2
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
help="path to input image we are going to classify")
ap.add_argument("-m", "--model", required=True,
help="path to trained Keras model")
ap.add_argument("-l", "--label-bin", required=True,
help="path to label binarizer")
ap.add_argument("-w", "--width", type=int, default=28,
help="target spatial dimension width")
ap.add_argument("-e", "--height", type=int, default=28,
help="target spatial dimension height")
ap.add_argument("-f", "--flatten", type=int, default=-1,
help="whether or not we should flatten the image")
args = vars(ap.parse_args())
# load the input image and resize it to the target spatial dimensions
image = cv2.imread(args["image"])
output = image
image = cv2.resize(image, (args["width"], args["height"]))
# scale the pixel values to [0, 1]
image = image.astype("float") / 255.0
# check to see if we should flatten the image and add a batch
# dimension
if args["flatten"] > 0:
image = image.flatten()
image = image.reshape((1, image.shape[0]))
# otherwise, we must be working with a CNN -- don't flatten the
# image, simply add the batch dimension
else:
image = image.reshape((1, image.shape[0], image.shape[1],
image.shape[2]))
# load the model and label binarizer
print("[INFO] loading network and label binarizer...")
model = load_model(args["model"])
lb = pickle.loads(open(args["label_bin"], "rb").read())
# make a prediction on the image
preds = model.predict(image)
# find the class label index with the largest corresponding
# probability
i = preds.argmax(axis=1)[0]
label = lb.classes_[i]
# draw the class label + probability on the output image
text = "{}: {:.2f}%".format(label, (preds[0][i] * 100-5.86))
cv2.putText(output, text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7,
(0, 0, 255), 2)
# show the output image
cv2.imshow("Image", output)
cv2.waitKey(0)