-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRCE.R
128 lines (109 loc) · 4.68 KB
/
RCE.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
library("readr")
library("dplyr")
library("plotly")
library("magrittr")
library("purrr")
library("tidyr")
library("writexl")
lambda_max <- 75
epsilon <- 1e-15
class_1_test_patterns <- c( 1:72 )
class_1_training_patterns <- c( 73:144 )
class_2_test_patterns <- c( 73:144 )
class_2_training_patterns <- c( 1:72 )
columns <- c( "mcv", "alkphos", "sgpt", "sgot", "gammagt", "drinks_num", "select")
features <- c( "alkphos", "sgpt", "gammagt")
#features <- c( "alkphos", "sgpt")
Bupa.Tib <- read_csv( "bupa.data", col_names = columns ) %>%
tibble::rowid_to_column("id")
# Lambda == the Euclidian distance to the nearest observation
# from the OTHER class
find_lambda <- function( observation, Other.Class.Tib, lambda_max, epsilon, features ) {
Other.Class.Tib %>%
select( features ) %>%
mutate( euclid_dist = apply( . , 1, function(x) sqrt( sum( ( x - observation )^2 ) ) ) ) %>%
select( euclid_dist ) %>%
min() %>%
min( . - epsilon, lambda_max ) }
rce_classify <- function( observation, Data.Tib, features ) {
Data.Tib %>%
select( features ) %>%
mutate( euclid_dist = apply( . , 1, function(x) sqrt( sum( ( x - observation )^2 ) ) ) ) %>%
filter( euclid_dist < Data.Tib$lambda ) %>%
nrow
}
rce_classify_tib <- function(Test.Data.Tib, Class.One.Train.Tib, Class.Two.Train.Tib, features) { Test.Data.Tib %<>%
select( features ) %>%
mutate( class.2.hits = apply( . , 1, function(x) rce_classify( x, Class.Two.Train.Tib , features ) ) ) %>%
mutate( id = Test.Data.Tib$id )
Test.Data.Tib %<>%
select(features) %>%
mutate( class.1.hits = apply( . , 1, function(x) rce_classify( x, Class.One.Train.Tib, features ) ) ) %>%
mutate( class.2.hits = Test.Data.Tib$class.2.hits,
id = Test.Data.Tib$id ) %>%
mutate( rce_class = ifelse( test = class.1.hits > class.2.hits,
yes = 1,
no = ifelse( test = class.2.hits > class.1.hits,
yes = 2,
no = 3)))
return(Test.Data.Tib)
}
# Class 1 Training patterns Tibble (Data Frame)
Class.1.Train.Tib <- Bupa.Tib %>%
filter( select == 1 ) %>%
select( id, features) %>%
slice( class_1_training_patterns )
# Class 2 Training patterns Tibble
Class.2.Train.Tib <- Bupa.Tib %>%
filter( select == 2 ) %>%
select( id, features) %>%
slice( class_2_training_patterns )
# Find Lambda for Class 1 Training patterns
Class.1.Train.Tib %<>%
select( features ) %>%
mutate( lambda = apply(. , 1, function(x) find_lambda(x,
Class.2.Train.Tib,
lambda_max,
epsilon,
features ) ) ) %>%
mutate( id = Class.1.Train.Tib$id )
# Find Lambda for Class 1 Training patterns
Class.2.Train.Tib %<>%
select( features ) %>%
mutate( lambda = apply(. , 1, function(x) find_lambda(x,
Class.1.Train.Tib,
lambda_max,
epsilon,
features ) ) ) %>%
mutate( id = Class.2.Train.Tib$id )
Test.Patterns <- Bupa.Tib %>%
filter( select == 1 ) %>%
slice( class_1_test_patterns ) %>%
bind_rows( Bupa.Tib %>%
filter( select == 2 ) %>%
slice( class_2_test_patterns ) )
Test.Patterns %<>% rce_classify_tib(Class.1.Train.Tib, Class.2.Train.Tib, features) %>%
left_join(Bupa.Tib, by = c(features, "id")) %>%
mutate( correct_class = select ) %>%
select( id, features, class.1.hits, class.2.hits, correct_class, rce_class ) %>%
mutate( error = ifelse( test = correct_class != rce_class,
yes = 1,
no = 0))
Test.Patterns %>% filter( rce_class != 3) %>% select(error) %>% sum/144
max_obs <- Class.1.Train.Tib %>%
bind_rows(Class.2.Train.Tib) %>%
select(features) %>%
max
test_grid <- expand.grid( seq( 0, max_obs * 1.1, length.out = 50 ),
seq( 0, max_obs * 1.1, length.out = 50 ),
seq( 0, max_obs * 1.1, length.out = 50 ) )
names( test_grid ) <- features
test_grid %<>%
as_tibble %>%
tibble::rowid_to_column("id") %>%
rce_classify_tib( Class.1.Train.Tib, Class.2.Train.Tib, features)
test_grid %>% filter( rce_class != 3 ) %>%
mutate( rce_class = ifelse( test = rce_class == 1,
yes = "one",
no = "two") ) %>%
plot_ly( x = ~alkphos, y = ~sgpt, z = ~gammagt , color = ~rce_class )