Skip to content

Latest commit

 

History

History
71 lines (54 loc) · 2.34 KB

README.md

File metadata and controls

71 lines (54 loc) · 2.34 KB

Brain Tumor Detection

A predictive Deep Learning Model trained on MRI images of Brain for Tumor Detection. This application aims to provide prior diagnosis for the existence of a tumor in a given brain MRI image.

Tumor Image No Tumor Image

Model Architecture

model = Sequential()
model.add(Conv2D(64, (3,3), input_shape = X_train.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size = (2,2))) # Pooling

model.add(Conv2D(64, (3,3), input_shape = X_train.shape[1:]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size = (2,2))) # Pooling


model.add(Flatten())
model.add(Dense(64))

model.add(Dense(1))
model.add(Activation('sigmoid'))

model.compile(loss = 'binary_crossentropy',
optimizer = 'adam',
metrics = ['accuracy'])

Tool Used: NN SVG

Layer (type) Output Shape Param
conv2d (Conv2D) (None, 148, 148, 64) 640
activation (Activation) (None, 148, 148, 64) 0
max_pooling2d (MaxPooling2D) (None, 74, 74, 64) 0
conv2d_1 (Conv2D) (None, 72, 72, 64) 36928
activation_1 (Activation) (None, 72, 72, 64) 0
max_pooling2d_1 (MaxPooling 2D) (None, 36, 36, 64) 0
flatten (Flatten) (None, 82944) 0
dense (Dense) (None, 64) 5308480
dense_1 (Dense) (None, 1) 65
activation_2 (Activation) (None, 1) 0

Dataset

Here is the Link for the dataset. The data folder consists of Yes and No folders which has MRI images that are labeled as Tumor and No-Tumor respectively.

Deployment

Requirements

1. tensorflow==2.2.1
2. numpy==1.18.5
3. opencv-python==4.2.0.34
4. pandas==1.0.4
5. scikit-learn==0.23.1