-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdqn.py
182 lines (154 loc) · 9.77 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import tensorflow as tf
import numpy as np
import pandas as pd
import random
import matplotlib.pyplot as plt
from environment import normalize_state
class DQN:
def __init__(self, params):
self.epochs = params['n_epochs']
self.patience = params['patience']
self.thrhld_earlystopping = params['thrhld_earlystopping']
self.batch_size = params['batch_size']
self.n_actions = len(params['actions'])
state_dim = len(params['state_def'])
num_neurons = params['n_neurons']
self._state = tf.placeholder(shape=[None, state_dim], dtype=tf.float32, name='state')
self._target_q = tf.placeholder(shape=[None, len(params['actions'])], dtype=tf.float32, name='target_q')
self._action_mask = tf.placeholder(shape=[None, len(params['actions'])], dtype=tf.float32)
eval_c_name = ['eval_c_name', tf.GraphKeys.GLOBAL_VARIABLES]
w1 = tf.get_variable('w1', [state_dim, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
b1 = tf.get_variable('b1', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
w2 = tf.get_variable('w2', [num_neurons, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
b2 = tf.get_variable('b2', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
w3 = tf.get_variable('w3', [num_neurons, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
b3 = tf.get_variable('b3', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
w4 = tf.get_variable('w4', [num_neurons, len(params['actions'])],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
b4 = tf.get_variable('b4', [1, len(params['actions'])],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=eval_c_name)
n1 = tf.nn.relu(tf.add(tf.matmul(self._state, w1), b1))
n2 = tf.nn.relu(tf.add(tf.matmul(n1, w2), b2))
n3 = tf.nn.relu(tf.add(tf.matmul(n2, w3), b3))
self._q = tf.add(tf.matmul(n3, w4), b4, name='q')
self._loss = tf.losses.mean_squared_error(tf.multiply(self._target_q, self._action_mask),
tf.multiply(self._q, self._action_mask))
self._optimizer = tf.train.AdamOptimizer(0.001).minimize(self._loss)
if params['double_dqn']:
tgt_c_name = ['tgt_c_name', tf.GraphKeys.GLOBAL_VARIABLES]
w1m = tf.get_variable('w1m', [state_dim, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
b1m = tf.get_variable('b1m', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
w2m = tf.get_variable('w2m', [num_neurons, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
b2m = tf.get_variable('b2m', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
w3m = tf.get_variable('w3m', [num_neurons, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
b3m = tf.get_variable('b3m', [1, num_neurons],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
w4m = tf.get_variable('w4m', [num_neurons, len(params['actions'])],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
b4m = tf.get_variable('b4m', [1, len(params['actions'])],
initializer=tf.contrib.layers.xavier_initializer(seed=1), collections=tgt_c_name)
n1m = tf.nn.relu(tf.add(tf.matmul(self._state, w1m), b1m))
n2m = tf.nn.relu(tf.add(tf.matmul(n1m, w2m), b2m))
n3m = tf.nn.relu(tf.add(tf.matmul(n2m, w3m), b3m))
self._q_m = tf.add(tf.matmul(n3m, w4m), b4m, name='q')
self._loss_m = tf.losses.mean_squared_error(tf.multiply(self._target_q, self._action_mask),
tf.multiply(self._q_m, self._action_mask))
self._optimizer_m = tf.train.AdamOptimizer(params['lr']).minimize(self._loss_m)
def train(self, data: pd.DataFrame, sess, epsd, params, prvs_loss):
# data_crnt_epsd = data.loc[data['epsd'] == epsd]
n_samples = data.shape[0]
batch_size = np.min([self.batch_size, data.shape[0]])
n_batches = np.min([int(np.floor(data.shape[0] / batch_size)), params['num_iterations']])
all_loss_values = np.empty(params['n_trainings_in_epsd'])
all_idcs = list(data.index)
sample_idcs = random.sample(range(n_samples), n_samples)
for batch_idx in range(params['n_trainings_in_epsd']):
selected_rows = sample_idcs[(batch_idx * batch_size): ((batch_idx + 1) * batch_size)]
idcs_selected_rows = [all_idcs[i] for i in selected_rows]
states = np.array(data.loc[idcs_selected_rows, params['state_def']], dtype=np.float32)
states = normalize_state(states, params['m'], params['s'])
q = np.reshape(np.array(data.loc[idcs_selected_rows, 'q']), (batch_size, 1))
if params['inherit_q']:
current_q = sess.run(self._q, feed_dict={self._state: states})
for idx in range(batch_size):
current_q[idx, data.loc[selected_rows[idx], 'action']] = q[idx, 0]
q = current_q
mask = np.ones(q.shape)
else:
mask = sess.run(tf.one_hot(data.loc[idcs_selected_rows, 'action'].astype('int'), self.n_actions))
q = np.hstack([q, q])
_, loss_value = sess.run([self._optimizer, self._loss], feed_dict={self._target_q: q,
self._action_mask: mask,
self._state: states})
all_loss_values[batch_idx] = loss_value
return np.mean(all_loss_values)
def predict(self, states, sess, m, s, model_reloaded=False):
states = normalize_state(np.array(states), m, s)
if model_reloaded:
return sess.run('q:0', feed_dict={'state:0': states})
else:
return sess.run(self._q, feed_dict={self._state: states})
def update_q(self, data: pd.DataFrame, sess, params):
double_dqn = params['double_dqn']
if double_dqn:
m = np.reshape(params['m'], (1, params['m'].size))
s = np.reshape(params['s'], (1, params['s'].size))
states_p = np.array(data[params['state_p_def']])
states_p = (np.array(states_p) - m) / s
next_q = sess.run(self._q_m, feed_dict={self._state: states_p})
next_q[np.isnan(next_q)] = 0
next_q = np.max(next_q, axis=1)
return data['reward_p'] + params['discounting'] * next_q
else:
states = (np.array(data[params['state_def']]) - params['m']) / params['s']
current_q = sess.run(self._q, feed_dict={self._state: states})
states_p = (np.array(data[params['state_p_def']]) - params['m']) / params['s']
next_q = sess.run(self._q, feed_dict={self._state: states_p})
next_q[np.isnan(next_q)] = 0
idcs = np.array(data['action'])
next_q = np.max(next_q, axis=1)
current_q = np.choose(idcs.astype(int), current_q.transpose())
return current_q * params['alpha'] + (1 - params['alpha']) * \
(data['reward_p'] + params['discounting'] * next_q)
def plot_prediction(self, sess, data, params):
plt.plot(data['q'])
# plt.plot(data['reward_p'])
states = np.array(data[params['state_def']])
states = normalize_state(states, params['m'], params['s'])
predicted_q = sess.run(self._q, {self._state: states})
actions = data['action']
predicted_q = [predicted_q[idx, actions[idx]] for idx in range(predicted_q.shape[0])]
plt.plot(predicted_q)
def training_fn(data: pd.DataFrame, action, params, n_samples=2000, batch_size=128):
n_samples = min(n_samples, data.shape[0])
selected_rows = random.sample(range(data.shape[0]), n_samples)
training_input = data.loc[selected_rows, params['state_def']]
training_input = training_input.loc[data['action'] == action]
selected_rows = training_input.index
y = data.loc[selected_rows, 'q']
return tf.estimator.inputs.pandas_input_fn(x=training_input, y=y, batch_size=batch_size, shuffle=True)
def prediction_fn(data: pd.DataFrame):
return tf.estimator.inputs.pandas_input_fn(x=data, shuffle=False)
def epsilon_greedy(epsilon, q=None):
num_predictions = len(q)
num_actions = len(q[0])
if np.random.rand() < epsilon:
return np.random.randint(0, num_actions, num_predictions)
# return 1 - np.random.randint(0, num_actions, num_predictions) * 0
else:
return [np.argmax(this_q) for this_q in q]
def return_state_p(data: pd.DataFrame, params):
state = data[params['state_p_def']].copy()
name_mapping = dict(zip(params['state_p_def'], params['state_def']))
return state.rename(columns=name_mapping)