-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathtrain_pg.py
153 lines (139 loc) · 6.41 KB
/
train_pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from pg import *
from environment import *
import os
import shutil
import pickle as pl
np.seterr(all='raise')
params = {'lane_width': 4,
'num_scenarios': 100,
'pos_var': 0.3,
'num_episodes': 3000,
'num_trainings_after_simulation': 12,
'n_epochs': 300,
'patience': 16,
'thrhld_earlystopping': 0.02,
'batch_size': 128,
'n_neurons': 100,
'num_iterations': 40,
'num_nds': 9,
'num_lanes': 3,
'actions': [0, 1],
'radar.fov': 2 * np.pi,
'radar.r_max': 7.5,
'sig_gps': 3.4,
'noise_l_max': 0.2,
'noise_alpha_max': 0.02,
'sigma_l': 0.1,
'sigma_alpha': 0.1 * np.pi / 180,
'lr': 0.0001,
'fim_gps': None,
'fim_gps_master': None,
'objective_peb': 0.12,
'cost_mea': 0.1,
'terminal_reward': 1.2,
'discounting': 1,
'state_def': ['delta_x', 'delta_y', 'var1x', 'var1y', 'var2x', 'var2y', 'varxx', 'varyy', 'n_ngbrs'],
'state_p_def': ['delta_x_p', 'delta_y_p', 'var1x_p', 'var1y_p', 'var2x_p', 'var2y_p', 'varxx_p', 'varyy_p',
'n_ngbrs_p'],
'saving_path': 'tf_models/current',
'xlim': 40,
'selfishness': 1,
'round_robin': True,
'sparse_reward': True,
'double_dqn': False,
'updating_interval4double_dqn': 20,
'min_loss': 0.008,
'm': np.array([1.5, 2.7, 0.3, 0.3, 1.7, 1.7, 0, 0, 3]),
's': np.array([40, 40, 1.1, 1.1, 2.6, 2.6, 0.1, 0.1, 2.5]),
'm_reward': 0,
's_reward': 1.6}
params['xlim'] = (params['num_nds'] / params['num_lanes'] - 1) * 5
if params['num_lanes'] == 3:
params['noise_l_max'] = 0.25
params['noise_alpha_max'] = 0.025
elif params['num_lanes'] == 1:
params['noise_l_max'] = 0.2
params['noise_alpha_max'] = 0.02
headers = ['epsd', 'iter', 'scnr', 'nd_idx1', 'nd_idx2', 'exe_crt_agt', 'delta_x', 'delta_y', 'var1x', 'var1y',
'var2x', 'var2y', 'varxx', 'varyy', 'n_ngbrs', 'action', 'reward']
sig_gps = params['sig_gps']
gps_fim = np.diag([1 / sig_gps ** 2, 1 / sig_gps ** 2]) * 2
gps_fim_master = np.diag([1 / sig_gps ** 2, 1 / sig_gps ** 2]) * 1e9
params['fim_gps'] = gps_fim
params['fim_gps_master'] = gps_fim_master
all_mean_rewards = np.empty(params['num_episodes'])
loss = 1
old_loss = 10
training_idx = 0
converged_training = 0
prvs_rwd = 0
scenarios = list()
for scenario_idx in range(params['num_scenarios']):
scenarios.append(Scenario(params['num_nds'], params['num_lanes'], params))
scenarios[scenario_idx].pass_msg_ngbrs(params)
with tf.Session() as sess:
pg = PolicyGradient(params)
sess.run(tf.global_variables_initializer())
for epsd_idx in range(params['num_episodes']):
data_this_epsd = pd.DataFrame(columns=headers)
exe_agts = np.zeros((params['num_scenarios'], 200), dtype=int)
for scenario in scenarios:
scenario.reset()
for itr_idx in range(params['num_iterations']):
raw_data = list()
for scnr_idx, scenario in enumerate(scenarios):
if params['round_robin']:
agt_idx = itr_idx % len(scenario.links)
else:
agt_idx = np.random.randint(0, len(scenario.links))
agt = scenario.links[agt_idx]
exe_agts[scnr_idx, agt_idx] += 1
delta_x, delta_y, var1x, var1y, var2x, var2y, varxx, varyy, n_nbgrs = \
scenario.gen_state(agt[0], agt[1], params)
action = 0 # action is set to 0 here because we need the state description to predict.
entry = [epsd_idx, itr_idx, scnr_idx, agt[0], agt[1], exe_agts[scnr_idx, agt_idx],
delta_x, delta_y, var1x, var1y, var2x, var2y, varxx, varyy, n_nbgrs, action, 0]
raw_data.append(entry)
data_this_epsd_iter = pd.DataFrame(raw_data, columns=headers)
# Select action
actions = pg.choose_action(data_this_epsd_iter[params['state_def']], sess, params)
data_this_epsd_iter['action'] = actions
for row_idx in range(data_this_epsd_iter.shape[0]):
scnr_idx = data_this_epsd_iter.loc[row_idx, 'scnr']
prvs_var = np.copy(np.diag(scenarios[scnr_idx].var))
nd_idx1 = data_this_epsd_iter.loc[row_idx, 'nd_idx1']
nd_idx2 = data_this_epsd_iter.loc[row_idx, 'nd_idx2']
scenarios[scnr_idx].update_var(actions[row_idx], nd_idx1, nd_idx2, params)
updt_var = np.copy(np.diag(scenarios[scnr_idx].var))
reward = calc_reward(data_this_epsd_iter.loc[row_idx, 'action'], nd_idx1, nd_idx2,
prvs_var, updt_var, params)
data_this_epsd_iter.loc[row_idx, 'reward'] = reward
data_this_epsd = pd.concat([data_this_epsd, data_this_epsd_iter], axis=0, ignore_index=True)
if epsd_idx == 0 and False:
m, s = calc_mean_std(data_this_epsd, params)
print('m = np.array({})'.format(list(m)))
print('s = np.array({})'.format(list(s)))
params['m'] = m
params['s'] = s
# Train DNN
new_loss = pg.train(data_this_epsd, params, sess, epsd_idx, loss)
mean_reward = np.sum(data_this_epsd['reward']) / params['num_scenarios']
all_mean_rewards[epsd_idx] = mean_reward
n_all_reached = sum(list(sum(scenario.pebs < params['objective_peb']) == params['num_nds']
for scenario in scenarios))
print('Mean reward: {0:.2f}, No. completed scenarios: {1} '
'for episode {2}.'.format(mean_reward, n_all_reached, epsd_idx))
if np.abs(mean_reward - prvs_rwd) < params['thrhld_earlystopping']:
converged_training += 1
else:
converged_training = 0
prvs_rwd = mean_reward
if converged_training >= params['patience'] or training_idx % 100 == 0:
if os.path.exists(params['saving_path']):
shutil.rmtree(params['saving_path'])
tf.saved_model.simple_save(sess, params['saving_path'], {'state': pg._state}, {'prob': pg._prob})
if converged_training >= params['patience']:
break
training_idx += 1
pl.dump(all_mean_rewards, open('tf_models/current/all_mean_rewards_pg.p', 'wb'))
print('It is ended.')