-
Notifications
You must be signed in to change notification settings - Fork 151
/
Copy pathmain.py
executable file
·242 lines (169 loc) · 8.27 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
from utils.constants import UNIVARIATE_ARCHIVE_NAMES as ARCHIVE_NAMES
from utils.utils import read_all_datasets
from utils.utils import transform_labels
from utils.utils import create_directory
from utils.utils import run_length_xps
from utils.utils import generate_results_csv
import utils
import numpy as np
import sys
import sklearn
def prepare_data():
x_train = datasets_dict[dataset_name][0]
y_train = datasets_dict[dataset_name][1]
x_test = datasets_dict[dataset_name][2]
y_test = datasets_dict[dataset_name][3]
nb_classes = len(np.unique(np.concatenate((y_train, y_test), axis=0)))
# make the min to zero of labels
y_train, y_test = transform_labels(y_train, y_test)
# save orignal y because later we will use binary
y_true = y_test.astype(np.int64)
y_true_train = y_train.astype(np.int64)
# transform the labels from integers to one hot vectors
enc = sklearn.preprocessing.OneHotEncoder()
enc.fit(np.concatenate((y_train, y_test), axis=0).reshape(-1, 1))
y_train = enc.transform(y_train.reshape(-1, 1)).toarray()
y_test = enc.transform(y_test.reshape(-1, 1)).toarray()
if len(x_train.shape) == 2: # if univariate
# add a dimension to make it multivariate with one dimension
x_train = x_train.reshape((x_train.shape[0], x_train.shape[1], 1))
x_test = x_test.reshape((x_test.shape[0], x_test.shape[1], 1))
return x_train, y_train, x_test, y_test, y_true, nb_classes, y_true_train, enc
def fit_classifier():
input_shape = x_train.shape[1:]
classifier = create_classifier(classifier_name, input_shape, nb_classes,
output_directory)
classifier.fit(x_train, y_train, x_test, y_test, y_true)
def create_classifier(classifier_name, input_shape, nb_classes, output_directory,
verbose=False, build=True):
if classifier_name == 'nne':
from classifiers import nne
return nne.Classifier_NNE(output_directory, input_shape,
nb_classes, verbose)
if classifier_name == 'inception':
from classifiers import inception
return inception.Classifier_INCEPTION(output_directory, input_shape, nb_classes, verbose,
build=build)
def get_xp_val(xp):
if xp == 'batch_size':
xp_arr = [16, 32, 128]
elif xp == 'use_bottleneck':
xp_arr = [False]
elif xp == 'use_residual':
xp_arr = [False]
elif xp == 'nb_filters':
xp_arr = [16, 64]
elif xp == 'depth':
xp_arr = [3, 9]
elif xp == 'kernel_size':
xp_arr = [8, 64]
else:
raise Exception('wrong argument')
return xp_arr
############################################### main
root_dir = '/b/home/uha/hfawaz-datas/temp-dl-tsc/'
xps = ['use_bottleneck', 'use_residual', 'nb_filters', 'depth',
'kernel_size', 'batch_size']
if sys.argv[1] == 'InceptionTime':
# run nb_iter_ iterations of Inception on the whole TSC archive
classifier_name = 'inception'
archive_name = ARCHIVE_NAMES[0]
nb_iter_ = 5
datasets_dict = read_all_datasets(root_dir, archive_name)
for iter in range(nb_iter_):
print('\t\titer', iter)
trr = ''
if iter != 0:
trr = '_itr_' + str(iter)
tmp_output_directory = root_dir + '/results/' + classifier_name + '/' + archive_name + trr + '/'
for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
print('\t\t\tdataset_name: ', dataset_name)
x_train, y_train, x_test, y_test, y_true, nb_classes, y_true_train, enc = prepare_data()
output_directory = tmp_output_directory + dataset_name + '/'
temp_output_directory = create_directory(output_directory)
if temp_output_directory is None:
print('Already_done', tmp_output_directory, dataset_name)
continue
fit_classifier()
print('\t\t\t\tDONE')
# the creation of this directory means
create_directory(output_directory + '/DONE')
# run the ensembling of these iterations of Inception
classifier_name = 'nne'
datasets_dict = read_all_datasets(root_dir, archive_name)
tmp_output_directory = root_dir + '/results/' + classifier_name + '/' + archive_name + '/'
for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
print('\t\t\tdataset_name: ', dataset_name)
x_train, y_train, x_test, y_test, y_true, nb_classes, y_true_train, enc = prepare_data()
output_directory = tmp_output_directory + dataset_name + '/'
fit_classifier()
print('\t\t\t\tDONE')
elif sys.argv[1] == 'InceptionTime_xp':
# this part is for running inception with the different hyperparameters
# listed in the paper, on the whole TSC archive
archive_name = 'TSC'
classifier_name = 'inception'
max_iterations = 5
datasets_dict = read_all_datasets(root_dir, archive_name)
for xp in xps:
xp_arr = get_xp_val(xp)
print('xp', xp)
for xp_val in xp_arr:
print('\txp_val', xp_val)
kwargs = {xp: xp_val}
for iter in range(max_iterations):
trr = ''
if iter != 0:
trr = '_itr_' + str(iter)
print('\t\titer', iter)
for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
output_directory = root_dir + '/results/' + classifier_name + '/' + '/' + xp + '/' + '/' + str(
xp_val) + '/' + archive_name + trr + '/' + dataset_name + '/'
print('\t\t\tdataset_name', dataset_name)
x_train, y_train, x_test, y_test, y_true, nb_classes, y_true_train, enc = prepare_data()
# check if data is too big for this gpu
size_data = x_train.shape[0] * x_train.shape[1]
temp_output_directory = create_directory(output_directory)
if temp_output_directory is None:
print('\t\t\t\t', 'Already_done')
continue
input_shape = x_train.shape[1:]
from classifiers import inception
classifier = inception.Classifier_INCEPTION(output_directory, input_shape, nb_classes,
verbose=False, build=True, **kwargs)
classifier.fit(x_train, y_train, x_test, y_test, y_true)
# the creation of this directory means
create_directory(output_directory + '/DONE')
print('\t\t\t\t', 'DONE')
# we now need to ensemble each iteration of inception (aka InceptionTime)
archive_name = ARCHIVE_NAMES[0]
classifier_name = 'nne'
datasets_dict = read_all_datasets(root_dir, archive_name)
tmp_output_directory = root_dir + '/results/' + classifier_name + '/' + archive_name + '/'
for xp in xps:
xp_arr = get_xp_val(xp)
for xp_val in xp_arr:
clf_name = 'inception/' + xp + '/' + str(xp_val)
for dataset_name in utils.constants.dataset_names_for_archive[archive_name]:
x_train, y_train, x_test, y_test, y_true, nb_classes, y_true_train, enc = prepare_data()
output_directory = tmp_output_directory + dataset_name + '/'
from classifiers import nne
classifier = nne.Classifier_NNE(output_directory, x_train.shape[1:],
nb_classes, clf_name=clf_name)
classifier.fit(x_train, y_train, x_test, y_test, y_true)
elif sys.argv[1] == 'run_length_xps':
# this is to generate the archive for the length experiments
run_length_xps(root_dir)
elif sys.argv[1] == 'generate_results_csv':
clfs = []
itr = '-0-1-2-3-4-'
inceptionTime = 'nne/inception'
# add InceptionTime: an ensemble of 5 Inception networks
clfs.append(inceptionTime + itr)
# add InceptionTime for each hyperparameter study
for xp in xps:
xp_arr = get_xp_val(xp)
for xp_val in xp_arr:
clfs.append(inceptionTime + '/' + xp + '/' + str(xp_val) + itr)
df = generate_results_csv('results.csv', root_dir, clfs)
print(df)