-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlayer.py
60 lines (56 loc) · 2.73 KB
/
layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
class DynamicLSTM(nn.Module):
''' LSTM which can hold variable length sequence, use like TensorFlow's RNN(input, length...). '''
def __init__(self, input_size, hidden_size, num_layers=1, bias=True, batch_first=True, dropout=0,
bidirectional=False, only_use_last_hidden_state=False, rnn_type='LSTM'):
super(DynamicLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.bias = bias
self.batch_first = batch_first
self.dropout = dropout
self.bidirectional = bidirectional
self.only_use_last_hidden_state = only_use_last_hidden_state
self.rnn_type = rnn_type
if self.rnn_type == 'LSTM':
self.RNN = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,
bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional)
elif self.rnn_type == 'GRU':
self.RNN = nn.GRU(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,
bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional)
elif self.rnn_type == 'RNN':
self.RNN = nn.RNN(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,
bias=bias, batch_first=batch_first, dropout=dropout, bidirectional=bidirectional)
def forward(self, x, x_len):
'''
sequence -> sort -> pad and pack -> process using RNN -> unpack -> unsort
'''
total_length = x.size(1) if self.batch_first else x.size(0) # the length of sequence
''' sort '''
x_sort_idx = torch.sort(x_len, descending=True)[1].long()
x_unsort_idx = torch.sort(x_sort_idx)[1].long()
x_len = x_len[x_sort_idx]
x = x[x_sort_idx]
''' pack '''
x_emb_p = torch.nn.utils.rnn.pack_padded_sequence(x, x_len, batch_first=self.batch_first)
''' process '''
if self.rnn_type == 'LSTM':
out_pack, (ht, ct) = self.RNN(x_emb_p, None)
else:
out_pack, ht = self.RNN(x_emb_p, None)
ct = None
''' unsort '''
ht = ht[:, x_unsort_idx]
if self.only_use_last_hidden_state:
return ht
else:
out, _ = torch.nn.utils.rnn.pad_packed_sequence(out_pack, batch_first=self.batch_first, total_length=total_length)
if self.batch_first:
out = out[x_unsort_idx]
else:
out = out[:, x_unsort_idx]
if self.rnn_type == 'LSTM':
ct = ct[:, x_unsort_idx]
return out, (ht, ct)