-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathinference_core.py
80 lines (58 loc) · 2.67 KB
/
inference_core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
from inference_memory_bank import MemoryBank
from model.eval_network import STCN
from model.aggregate import aggregate
from util.tensor_util import pad_divide_by
class InferenceCore:
def __init__(self, prop_net:STCN, images, num_objects, top_k=20, mem_every=5, include_last=False):
self.prop_net = prop_net
self.mem_every = mem_every
self.include_last = include_last
# True dimensions
t = images.shape[1]
h, w = images.shape[-2:]
# Pad each side to multiple of 16
images, self.pad = pad_divide_by(images, 16)
# Padded dimensions
nh, nw = images.shape[-2:]
self.images = images
self.device = 'cuda'
self.k = num_objects
# Background included, not always consistent (i.e. sum up to 1)
self.prob = torch.zeros((self.k+1, t, 1, nh, nw), dtype=torch.float32, device=self.device)
self.prob[0] = 1e-7
self.t, self.h, self.w = t, h, w
self.nh, self.nw = nh, nw
self.kh = self.nh//16
self.kw = self.nw//16
self.mem_bank = MemoryBank(k=self.k, top_k=top_k)
def encode_key(self, idx):
result = self.prop_net.encode_key(self.images[:,idx].cuda())
return result
def do_pass(self, key_k, key_v, idx, end_idx):
self.mem_bank.add_memory(key_k, key_v)
closest_ti = end_idx
# Note that we never reach closest_ti, just the frame before it
this_range = range(idx+1, closest_ti)
end = closest_ti - 1
for ti in this_range:
k16, qv16, qf16, qf8, qf4 = self.encode_key(ti)
out_mask = self.prop_net.segment_with_query(self.mem_bank, qf8, qf4, k16, qv16)
out_mask = aggregate(out_mask, keep_bg=True)
self.prob[:,ti] = out_mask
if ti != end:
is_mem_frame = ((ti % self.mem_every) == 0)
if self.include_last or is_mem_frame:
prev_value = self.prop_net.encode_value(self.images[:,ti].cuda(), qf16, out_mask[1:])
prev_key = k16.unsqueeze(2)
self.mem_bank.add_memory(prev_key, prev_value, is_temp=not is_mem_frame)
return closest_ti
def interact(self, mask, frame_idx, end_idx):
mask, _ = pad_divide_by(mask.cuda(), 16)
self.prob[:, frame_idx] = aggregate(mask, keep_bg=True)
# KV pair for the interacting frame
key_k, _, qf16, _, _ = self.encode_key(frame_idx)
key_v = self.prop_net.encode_value(self.images[:,frame_idx].cuda(), qf16, self.prob[1:,frame_idx].cuda())
key_k = key_k.unsqueeze(2)
# Propagate
self.do_pass(key_k, key_v, frame_idx, end_idx)