forked from FindHao/drgpu
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathread_reports.py
274 lines (255 loc) · 15.5 KB
/
read_reports.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from gather import *
import configparser
import pandas as pd
from io import StringIO
import sys
from counters import *
from unit_hunt import common_function_pattern, add_to_tmp_stats
from source_code_analysis import Source_Code_Line, stalls_mapping_to_detail_report
from os import path
import numpy as np
def fill_report_ncu(report):
with open(report.path, 'r') as fin:
raw_content = fin.read()
reg = re.compile(r'"ID","Process ID","Process Name"[\s\S]+')
content = reg.findall(raw_content)
if not content:
reg2 = re.compile(r'ID,Time,API Call ID[\s\S]+')
content = reg2.findall(raw_content)
if not content:
print("Report is empty or wrong format. Path: %s" % (report.path))
exit(2)
raw_counters_df = pd.read_csv(StringIO(content[0]), keep_default_na=False)
return raw_counters_df
def select_all_counters_ncu(raw_counters_df, stats, kernel_id):
raw_counters_df_first = raw_counters_df[kernel_id + 1:kernel_id + 2]
missing = False
for counter_name in counters_name_map_for_ncu:
cname_in_ncu = counters_name_map_for_ncu[counter_name][0]
if cname_in_ncu not in raw_counters_df_first.columns:
missing = True
print("The report doesn't has this counter: %s -> %s" % (counter_name, cname_in_ncu))
else:
as_type = counters_name_map_for_ncu[counter_name][1]
tmp_stat = Stat(counter_name, cname_in_ncu)
# if raw_counters_df_first.loc[kernel_id + 1, cname_in_ncu] != 'nan':
raw_item = raw_counters_df_first.loc[kernel_id + 1, cname_in_ncu]
tmp_stat.value = convert_raw_item(raw_item, as_type)
stats[counter_name] = tmp_stat
if counter_name == 'retireIPC':
pass
fill_missing_counters_ncu(raw_counters_df_first, stats, kernel_id)
if missing:
# @todo for debug, comment this temporarily.
# exit(3)
pass
def fill_missing_counters_ncu(raw_counters_df_first, stats, kernel_id):
stats['gnic_lg_read_requests_postcoalescing'] = Stat('gnic_lg_read_requests_postcoalescing', 'missing', 1)
stats['gnic_lg_read_requests_precoalescing'] = Stat('gnic_lg_read_requests_precoalescing', 'missing', 1)
stats['global_ld_requests'] = Stat('global_ld_requests', 'missing', -1)
stats['gnic_latency'] = Stat('gnic_latency', 'missing', -1)
stats['mmu_ack_latency'] = Stat('mmu_ack_latency', 'missing', -1)
stats['ltp_utlb_hit'] = Stat('ltp_utlb_hit', 'missing', 1)
stats['ltp_utlb_miss'] = Stat('ltp_utlb_miss', 'missing', 1)
l1_lines_per_instruction_avg_stat = Stat('l1_lines_per_instruction_avg', 'l1tex__t_set_accesses/l1tex__t_requests')
l1_lines_per_instruction_avg_stat.value = stats['l1tex__t_set_accesses'].value / stats['l1tex__t_requests'].value
stats['l1_lines_per_instruction_avg'] = l1_lines_per_instruction_avg_stat
stats['gpcl1_tlb_hit'] = Stat('gpcl1_tlb_hit', 'missing', 1)
stats['gpcl1_tlb_miss'] = Stat('gpcl1_tlb_miss', 'missing', 0)
# @todo has already directly commented this counter in long_scoreboard_throughput()
stats['ltp_utlb_arb_not_stalled'] = Stat('ltp_utlb_arb_not_stalled', 'missing', 0)
# This counter is showed when l2 is bottleneck. Nothig else.
stats['l2_bank_conflict'] = Stat('l2_bank_conflict', 'l2_bank_conflict', 0)
# set it to 1 to avoid dividing by 0
stats['l2_data_bank_accesses'] = Stat('l2_data_bank_accesses', 'l2_data_bank_accesses', 1)
# dram__sectors / dram__activates
stats['fb_accesses_per_activate'] = Stat('fb_accesses_per_activate', 'missing', -1)
stats['dram_util'] = Stat('dram_util', 'missing', -1)
stats['dram_throughput'] = Stat('dram_throughput', 'missing', -1)
stats['average_latency_reads'] = Stat('average_latency_reads', 'missing', -1)
stats['average_latency_writes'] = Stat('average_latency_writes', 'missing', -1)
stats['average_dram_banks'] = Stat('average_dram_banks', 'missing', -1)
stats['dram_lowBanks'] = Stat('dram_lowBanks', 'missing', -1)
stats['dram_noReq'] = Stat('dram_noReq', 'missing', -1)
stats['dram_turns'] = Stat('dram_turns', 'missing', -1)
stats['imc_hitrate'] = Stat('imc_hitrate', 'missing', 1)
stats['generic_ld_latency'] = Stat('generic_ld_latency', 'missing', 0)
stats['shmem_ld_latency'] = Stat('shmem_ld_latency', 'missing', 0)
stats['lg_ld_latency'] = Stat('lg_ld_latency', 'missing', 0)
stats['inst_mem_geld_32b'] = Stat('inst_mem_geld_32b', 'missing', 0)
stats['inst_mem_geld_64b'] = Stat('inst_mem_geld_64b', 'missing', 0)
stats['inst_mem_geld_128b'] = Stat('inst_mem_geld_128b', 'missing', 0)
stats['inst_mem_ldgsts_32b'] = Stat('inst_mem_ldgsts_32b', 'missing', 0)
stats['inst_mem_ldgsts_64b'] = Stat('inst_mem_ldgsts_64b', 'missing', 0)
stats['inst_mem_ldgsts_128b'] = Stat('inst_mem_ldgsts_128b', 'missing', 0)
# @todo bug: inst related counters of rodinia/myocyte are nan. However, it do have memory operations.
inst_mem_32b = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_memory_32b.sum']) + convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_memory_8b.sum']) + convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_memory_16b.sum'])
inst_mem_64b = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_memory_64b.sum'])
inst_mem_128b = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_memory_128b.sum'])
inst_mem_Xb = inst_mem_32b + inst_mem_64b + inst_mem_128b
inst_shared_ld = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_shared_ld.sum'])
inst_global_ld = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_global_ld.sum'])
inst_local_ld = convert_raw_item(raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_local_ld.sum'])
# This counter's value > inst_gld + inst_lld + inst_sld. Maybe missing somethig in report.
# inst_mem_ld = int(raw_counters_df_first.loc[1, 'sm__sass_inst_executed_op_ld.sum'].replace(',', ''))
inst_mem_ld = inst_global_ld + inst_shared_ld + inst_local_ld
inst_shared_st = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_shared_st.sum'])
inst_global_st = convert_raw_item(
raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_global_st.sum'])
inst_local_st = convert_raw_item(raw_counters_df_first.loc[kernel_id + 1, 'sm__sass_inst_executed_op_local_st.sum'])
inst_mem_st = inst_shared_st + inst_global_st + inst_local_st
# the inst_mem_Xb is not same to the sum of global/local/shared op numbers which is strange
stats['inst_mem_shared_ld_32b'] = Stat('inst_mem_shared_ld_32b', 'missing',
inst_shared_ld * (inst_mem_32b / inst_mem_Xb))
stats['inst_mem_shared_ld_64b'] = Stat('inst_mem_shared_ld_64b', 'missing',
inst_shared_ld * (inst_mem_64b / inst_mem_Xb))
stats['inst_mem_shared_ld_128b'] = Stat('inst_mem_shared_ld_128b', 'missing',
inst_shared_ld * (inst_mem_128b / inst_mem_Xb))
stats['shared_ld_requests'] = Stat('shared_ld_requests', 'sum(shared_ld_*b_executed)',
stats['inst_mem_shared_ld_32b'].value + stats['inst_mem_shared_ld_64b'].value +
stats['inst_mem_shared_ld_128b'].value)
stats['inst_mem_shared_st_32b'] = Stat('inst_mem_shared_st_32b', 'missing',
inst_shared_st * (inst_mem_32b / inst_mem_Xb))
stats['inst_mem_shared_st_64b'] = Stat('inst_mem_shared_st_64b', 'missing',
inst_shared_st * (inst_mem_64b / inst_mem_Xb))
stats['inst_mem_shared_st_128b'] = Stat('inst_mem_shared_st_128b', 'missing',
inst_shared_st * (inst_mem_128b / inst_mem_Xb))
stats['shared_st_requests'] = Stat('shared_st_requests', 'sum(shared_st_*b_executed)',
stats['inst_mem_shared_st_32b'].value + stats['inst_mem_shared_st_64b'].value +
stats['inst_mem_shared_st_128b'].value)
stats['inst_mem_gld_32b'] = Stat('inst_mem_gld_32b', 'missing',
inst_global_ld * (inst_mem_32b / inst_mem_Xb))
stats['inst_mem_gld_64b'] = Stat('inst_mem_gld_64b', 'missing',
inst_global_ld * (inst_mem_64b / inst_mem_Xb))
stats['inst_mem_gld_128b'] = Stat('inst_mem_gld_128b', 'missing',
inst_global_ld * (inst_mem_128b / inst_mem_Xb))
stats['generic_ld_32b_executed'] = Stat('generic_ld_32b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
stats['generic_ld_64b_executed'] = Stat('generic_ld_64b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
stats['generic_ld_128b_executed'] = Stat('generic_ld_128b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
stats['ldgsts_ld_32b_executed'] = Stat('ldgsts_ld_32b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
stats['ldgsts_ld_64b_executed'] = Stat('ldgsts_ld_64b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
stats['ldgsts_ld_128b_executed'] = Stat('ldgsts_ld_128b_executed', 'missing',
0 * (inst_mem_32b / inst_mem_Xb))
def fill_stats(stats, report):
"""
@arg stats: We store all stats(hw counters) in this argument.
"""
raw_counters_df = fill_report_ncu(report)
select_all_counters_ncu(raw_counters_df, stats, report.kernel_id)
def read_config(config_file_path, config):
if not config_file_path.startswith('/'):
config_file_path = "mem_config/" + config_file_path
if not path.exists(config_file_path):
print("Memory config file %s doesn't exist" % config_file_path)
exit(1)
else:
print('Use "%s" as memory config' % (config_file_path))
configparser_tmp = configparser.ConfigParser()
configparser_tmp.read(config_file_path)
configparser_tmp = configparser_tmp['Default']
config.warp_size = int(configparser_tmp['warp_size'])
config.quadrants_per_SM = int(configparser_tmp['quadrants_per_SM'])
config.max_number_of_showed_nodes = int(configparser_tmp['max_number_of_showed_nodes'])
config.max_percentage_of_showed_nodes = float(configparser_tmp['max_percentage_of_showed_nodes'])
config.L1_THROUGHPUT_FIX = float(configparser_tmp['L1_THROUGHPUT_FIX'])
config.uTLB_THROUGHPUT_FIX = float(configparser_tmp["uTLB_THROUGHPUT_FIX"])
config.L1_TLB_THROUGHPUT_FIX = float(configparser_tmp['L1_TLB_THROUGHPUT_FIX'])
config.BYTES_PER_L2_INSTRUCTION = int(configparser_tmp["BYTES_PER_L2_INSTRUCTION"])
config.BYTES_PER_L1_INSTRUCTION = int(configparser_tmp['BYTES_PER_L1_INSTRUCTION'])
config.L2_THROUGHPUT_FIX = float(configparser_tmp['L2_THROUGHPUT_FIX'])
config.FB_THROUGHPUT_FIX = float(configparser_tmp['FB_THROUGHPUT_FIX'])
config.conflict_high_threshold = float(configparser_tmp['conflict_high_threshold'])
config.low_activewarps_per_activecycle = int(configparser_tmp['low_activewarps_per_activecycle'])
config.L1_THROUGHPUT_PEAK = int(configparser_tmp['L1_THROUGHPUT_PEAK'])
config.high_l1_throughput = float(configparser_tmp['high_l1_throughput'])
config.high_l1_hit_rate = float(configparser_tmp['high_l1_hit_rate'])
config.high_l1_conflict_rate = float(configparser_tmp['high_l1_conflict_rate'])
config.low_access_per_activate = float(configparser_tmp['low_access_per_activate'])
config.low_bank_per_access = float(configparser_tmp['low_bank_per_access'])
config.within_load_coalescing_ratio = float(configparser_tmp['within_load_coalescing_ratio'])
config.low_l1_hit_rate = float(configparser_tmp['low_l1_hit_rate'])
config.high_utlb_miss_rate = float(configparser_tmp['high_utlb_miss_rate'])
config.high_l2_miss_rate = float(configparser_tmp['high_l2_miss_rate'])
config.high_l2_bank_conflict_rate = float(configparser_tmp['high_l2_bank_conflict_rate'])
config.high_not_predicated_off_thread_per_inst_executed = int(
configparser_tmp['high_not_predicated_off_thread_per_inst_executed'])
config.max_not_predicated_off_thread_per_inst_executed = int(
configparser_tmp['max_not_predicated_off_thread_per_inst_executed'])
config.low_compress_rate = float(configparser_tmp['low_compress_rate'])
config.L1_LATENCY_FIX = int(configparser_tmp['L1_LATENCY_FIX'])
config.uTLB_LATENCY_FIX = int(configparser_tmp['uTLB_LATENCY_FIX'])
config.l1TLB_LATENCY_FIX = int(configparser_tmp['l1TLB_LATENCY_FIX'])
config.l2_latency = int(configparser_tmp['l2_latency'])
config.fb_latency = int(configparser_tmp['fb_latency'])
config.max_percentage_of_showed_source_code_nodes = float(
configparser_tmp['max_percentage_of_showed_source_code_nodes'])
config.max_number_of_showed_source_code_nodes = int(configparser_tmp['max_number_of_showed_source_code_nodes'])
config.max_avtive_warps_per_SM = int(configparser_tmp['max_avtive_warps_per_SM'])
config.compute_capability = int(configparser_tmp['compute_capability'])
def fill_source_report(report: Report, analysis: Analysis):
source_df = pd.read_csv(report.source_report_path)
for i in range(len(source_df)):
analysis.source_lines.append(None)
current_filename = source_df.iat[0, 1]
for i in range(1, len(source_df)):
code_line = Source_Code_Line()
line_id = source_df.index.values[i]
# code_line.line_number = line_number
raw_line_content = source_df.at[line_id, 'Source']
if type(raw_line_content) == str:
raw_line_content = raw_line_content.strip()
code_line.raw_line = raw_line_content
x = source_df.at[line_id, '#']
if np.isnan(x):
current_filename = raw_line_content
continue
else:
line_number = int(x)
code_line.line_number = line_number
code_line.file_name = current_filename
analysis.source_lines[line_id] = code_line
for stall_reason in stalls_mapping_to_detail_report:
new_dict = {line_id: source_df.at[line_id, stall_reason]}
cur_stall_reason = analysis.stall_sass_code.get(stalls_mapping_to_detail_report[stall_reason])
if cur_stall_reason:
cur_stall_reason.update(new_dict)
else:
analysis.stall_sass_code[stalls_mapping_to_detail_report[stall_reason]] = new_dict
def convert_raw_item(aitem, as_type=float):
if aitem == 'nan':
return 0
real_type = type(aitem)
if real_type in [float, int]:
return aitem
elif real_type == str:
if as_type == str:
return aitem
else:
if aitem.find('.') >= 0:
return float(aitem.replace(',', ''))
else:
return int(aitem.replace(',', ''))
else:
print("unrecognized type of %s " % str(aitem))
exit(-1)
def get_kernel_name(raw_kernel_name):
if len(raw_kernel_name) > 20:
left = raw_kernel_name.find("(")
if left >= 0:
return raw_kernel_name[:left]
return raw_kernel_name[:20]
else:
return raw_kernel_name