diff --git a/docs/hub/gguf.md b/docs/hub/gguf.md index f2d27fdc5..b6e20e2f8 100644 --- a/docs/hub/gguf.md +++ b/docs/hub/gguf.md @@ -65,25 +65,25 @@ Find more information [here](https://github.com/huggingface/huggingface.js/tree/ |---------------------------|--------|-------------| | F32 | [Wikipedia](https://en.wikipedia.org/wiki/Single-precision_floating-point_format) | 32-bit standard IEEE 754 single-precision floating-point number. | | F16 | [Wikipedia](https://en.wikipedia.org/wiki/Half-precision_floating-point_format) | 16-bit standard IEEE 754 half-precision floating-point number. | -| Q4_0 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 4-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | -| Q4_1 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 4-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today). | -| Q5_0 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 5-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | -| Q5_1 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 5-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today). | -| Q8_0 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 8-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | -| Q8_1 | [GitHub Discussion](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 8-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today) | -| Q2_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 2-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weight. Weight formula: `w = q * block_scale(4-bit) + block_min(4-bit)`, resulting in 2.5625 bits-per-weight. | -| Q3_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 3-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weights. Weight formula: `w = q * block_scale(6-bit)`, resulting. 3.4375 bits-per-weight. | -| Q4_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 4-bit quantization (`q`). Super-blocks with 8 blocks, each block has 32 weights. Weight formula: `w = q * block_scale(6-bit) + block_min(6-bit)`, resulting in 4.5 bits-per-weight. | -| Q5_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 5-bit quantization (`q`). Super-blocks with 8 blocks, each block has 32 weights. Weight formula: `w = q * block_scale(6-bit) + block_min(6-bit)`, resulting in 5.5 bits-per-weight. | -| Q6_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 6-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weights. Weight formula: `w = q * block_scale(8-bit)`, resulting in 6.5625 bits-per-weight. | -| Q8_K | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 8-bit quantization (`q`). Each block has 256 weights. Only used for quantizing intermediate results. All 2-6 bit dot products are implemented for this quantization type. Weight formula: `w = q * block_scale`. | -| IQ2_XXS | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.06 bits-per-weight. | -| IQ2_XS | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.31 bits-per-weight. | -| IQ3_XXS | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 3-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 3.06 bits-per-weight. | -| IQ1_S | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 1-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 1.56 bits-per-weight. | -| IQ4_NL | [GitHub Pull Request](https://github.com/ggerganov/llama.cpp/pull/5590) | 4-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`. | -| IQ3_S | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 3-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 3.44 bits-per-weight. | -| IQ2_S | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.5 bits-per-weight. | -| IQ4_XS | [Hugging Face](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 4-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 4.25 bits-per-weight. | +| Q8_0 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 8-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | +| Q8_1 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 8-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today) | +| Q8_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 8-bit quantization (`q`). Each block has 256 weights. Only used for quantizing intermediate results. All 2-6 bit dot products are implemented for this quantization type. Weight formula: `w = q * block_scale`. | +| Q6_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 6-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weights. Weight formula: `w = q * block_scale(8-bit)`, resulting in 6.5625 bits-per-weight. | +| Q5_0 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 5-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | +| Q5_1 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 5-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today). | +| Q5_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 5-bit quantization (`q`). Super-blocks with 8 blocks, each block has 32 weights. Weight formula: `w = q * block_scale(6-bit) + block_min(6-bit)`, resulting in 5.5 bits-per-weight. | +| Q4_0 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557654249) | 4-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale`. Legacy quantization method (not used widely as of today). | +| Q4_1 | [GH](https://github.com/huggingface/huggingface.js/pull/615#discussion_r1557682290) | 4-bit round-to-nearest quantization (`q`). Each block has 32 weights. Weight formula: `w = q * block_scale + block_minimum`. Legacy quantization method (not used widely as of today). | +| Q4_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 4-bit quantization (`q`). Super-blocks with 8 blocks, each block has 32 weights. Weight formula: `w = q * block_scale(6-bit) + block_min(6-bit)`, resulting in 4.5 bits-per-weight. | +| Q3_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 3-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weights. Weight formula: `w = q * block_scale(6-bit)`, resulting. 3.4375 bits-per-weight. | +| Q2_K | [GH](https://github.com/ggerganov/llama.cpp/pull/1684#issue-1739619305) | 2-bit quantization (`q`). Super-blocks with 16 blocks, each block has 16 weight. Weight formula: `w = q * block_scale(4-bit) + block_min(4-bit)`, resulting in 2.5625 bits-per-weight. | +| IQ4_XS | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 4-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 4.25 bits-per-weight. | +| IQ3_S | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 3-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 3.44 bits-per-weight. | +| IQ3_XXS | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 3-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 3.06 bits-per-weight. | +| IQ2_XXS | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.06 bits-per-weight. | +| IQ2_S | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.5 bits-per-weight. | +| IQ2_XS | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 2-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 2.31 bits-per-weight. | +| IQ1_S | [HF](https://huggingface.co/CISCai/OpenCodeInterpreter-DS-6.7B-SOTA-GGUF/blob/main/README.md?code=true#L59-L70) | 1-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`, resulting in 1.56 bits-per-weight. | +| IQ4_NL | [GH](https://github.com/ggerganov/llama.cpp/pull/5590) | 4-bit quantization (`q`). Super-blocks with 256 weights. Weight `w` is obtained using `super_block_scale` & `importance matrix`. | *if there's any inaccuracy on the table above, please open a PR on [this file](https://github.com/huggingface/huggingface.js/blob/main/packages/gguf/src/quant-descriptions.ts).* \ No newline at end of file