-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoptimum.py
252 lines (214 loc) · 9.35 KB
/
optimum.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import argparse
import hashlib
import json
import re
from dataclasses import dataclass, field
from datetime import datetime
from typing import Any, Dict, Protocol, Optional
from urllib.parse import urlparse
from opensearchpy import OpenSearch
PERFORMANCE_RECORD_LATENCY_MS = "latency"
PERFORMANCE_RECORD_THROUGHPUT_SAMPLE_PER_SEC = "throughput"
@dataclass
class PerformanceRecord:
metric: str
kind: str
value: Any
when: datetime = field(default_factory=lambda: datetime.now())
meta: Dict[str, Any] = field(default_factory=dict)
@staticmethod
def latency(metric: str, value_ms: float, meta: Optional[Dict[str, Any]] = None, when: Optional[datetime] = None):
r"""
Create a PerformanceRecord tracking latency information
Args:
`metric` (`str`):
Metric identifier
`value_ms` (`float`):
The recorded latency, in millisecond, for the underlying metric record
`meta` (`Optional[Dict[str, Any]]`, defaults to `{}`)
Information relative to the recorded metric to store alongside the metric readout
`when` (`Optional[datetime]`, defaults to `datetime.now()`)
Indicates when the underlying metric was recorded
Returns:
The performance record for the target metric representing latency
"""
return PerformanceRecord(
metric=metric, kind=PERFORMANCE_RECORD_LATENCY_MS, value=value_ms, when=when, meta=meta
)
@staticmethod
def throughput(metric: str, value_sample_per_sec: float, meta: Optional[Dict[str, Any]] = None,
when: Optional[datetime] = None):
r"""
Create a PerformanceRecord tracking throughput information
Args:
`metric` (`str`):
Metric identifier
`value_sample_per_sec` (`float`):
The recorded throughput, in samples per second, for the underlying metric record
`meta` (`Optional[Dict[str, Any]]`, defaults to `{}`)
Information relative to the recorded metric to store alongside the metric readout
`when` (`Optional[datetime]`, defaults to `datetime.now()`)
Indicates when the underlying metric was recorded
Returns:
The performance record for the target metric representing throughput
"""
return PerformanceRecord(
metric=metric,
kind=PERFORMANCE_RECORD_THROUGHPUT_SAMPLE_PER_SEC,
value=value_sample_per_sec,
when=when,
meta=meta
)
def as_document(self) -> Dict[str, Any]:
r"""
Convert the actual `PerformanceRecord` to a dictionary based representation compatible with document storage
Returns:
Dictionary of strings keys with the information stored in this record
"""
parcel = {"date": self.when.timestamp(), "metric": self.metric, "kind": self.kind, "value": self.value}
return parcel | self.meta
class PerformanceTrackerStore(Protocol):
r"""
Base interface defining a performance tracker tool
"""
@staticmethod
def from_uri(uri: str) -> "PerformanceTrackerStore":
r"""
Create the `PerformanceTrackerStore` from the provided URI information
Args:
`uri` (`str`):
URI specifying over which protocol and where will be stored the record(s)
Returns:
Instance of a `PerformanceTrackerStore` which information are inferred from the specified URI
"""
pass
def push(self, collection: str, record: "PerformanceRecord"):
r"""
Attempt to append the provided record to the underlying tracker putting under the specified collection
Args:
`collection` (`str`):
Name of the bucket the specified record should be pushed
`record` (`PerformanceRecord`):
The materialized record to push
"""
pass
class OpenSearchPerformanceTrackerStore(PerformanceTrackerStore):
r"""
Amazon Web Services (AWS) OpenSearch based PerformanceTrackerStore
Supported URIs are as follows:
- os://<username:password@><hostname>:<port>
- os+aws://<aws_access_key_id:aws_secret_access_key@><hostname>:<port>
- os+aws://<hostname>:<port> - will use the stored aws credentials on the system
"""
# Extract region and service from AWS url (ex: us-east-1.es.amazonaws.com)
AWS_URL_RE = re.compile(r"([a-z]+-[a-z]+-[0-9])\.(.*)?\.amazonaws.com")
def __init__(self, url: str, auth):
uri = urlparse(url)
self._client = OpenSearch(
[{"host": uri.hostname, "port": uri.port or 443}],
http_auth=auth,
http_compress=True,
use_ssl=True
)
# Sanity check
self._client.info()
@staticmethod
def from_uri(uri: str) -> "PerformanceTrackerStore":
if not (_uri := urlparse(uri)).scheme.startswith("es"):
raise ValueError(f"Invalid URI {uri}: should start with os:// or os+aws://")
if _uri.scheme == "es+aws":
from boto3 import Session as AwsSession
from botocore.credentials import Credentials as AwsCredentials
from opensearchpy import Urllib3AWSV4SignerAuth
# Create AWS session from the (eventual) creds
if not _uri.username and not _uri.password:
session = AwsSession()
creds = session.get_credentials()
else:
creds = AwsCredentials(_uri.username, _uri.password)
# Parse the url to extract region and service
if len(match := re.findall(OpenSearchPerformanceTrackerStore.AWS_URL_RE, _uri.netloc)) != 1:
raise ValueError(f"Failed to parse AWS es service URL {uri}")
region, service = match[0]
auth = Urllib3AWSV4SignerAuth(creds, region, service)
else:
auth = (_uri.username, _uri.password)
return OpenSearchPerformanceTrackerStore(uri, auth)
def _ensure_collection_exists(self, collection: str):
if not self._client.indices.exists(collection):
self._client.indices.create(collection)
def push(self, collection: str, record: "PerformanceRecord"):
self._ensure_collection_exists(collection)
self._client.index(collection, record.as_document())
class AutoPerformanceTracker:
@staticmethod
def from_uri(uri: str) -> "PerformanceTrackerStore":
if uri.startswith("es://") or uri.startswith("es+aws://"):
return OpenSearchPerformanceTrackerStore.from_uri(uri)
raise ValueError(
f"Unable to determine the service associated with URI: {uri}. "
"Valid schemas are es:// or es+aws://"
)
def main():
parser = argparse.ArgumentParser(
prog='text-generation-inference-benchmark-optimum',
description='Pushes benchmark results to an OpenSearch instance'
)
parser.add_argument(
'--uri',
type=str,
required=False,
help='URI to the OpenSearch instance where to push the benchmark results',
default='"es+aws://search-optimum-benchmarks-kb3meoztyufprqul537nq7deny.us-east-1.es.amazonaws.com"'
)
parser.add_argument(
'--collection',
type=str,
required=False,
help='Collection name where to push the benchmark results',
default='ci_tgi_performances_tracker'
)
parser.add_argument(
'--meta',
action='append',
required=False,
help='Meta information to store alongside the benchmark results, use multiple times for multiple values',
nargs='?'
)
parser.add_argument(
'results',
type=str,
help='File containing the benchmark results to push',
)
args = parser.parse_args()
meta = flatten(args.meta)
bench_id = hashlib.md5(open(args.results, 'rb').read()).hexdigest()
meta['bench_id'] = bench_id
with open(args.results, 'r') as f:
data = json.load(f)
tracker=AutoPerformanceTracker.from_uri("es+aws://search-optimum-benchmarks-kb3meoztyufprqul537nq7deny.us-east-1.es.amazonaws.com")
filtered_results = [result for result in data['results'] if
result['id'] != 'warmup' and result['id'] != 'throughput']
latency_metrics_to_push = ['inter_token_latency_ms_p90', 'time_to_first_token_ms_p90', 'e2e_latency_ms_p90']
throughput_metrics_to_push = ['token_throughput_secs']
start_time = data['start_time']
for result in filtered_results:
for metric in latency_metrics_to_push:
record = PerformanceRecord.latency(metric, result[metric], {**meta, 'qps': result['config']['rate']},
when=start_time)
print(record)
tracker.push("ci_tgi_performances_tracker", record)
for metric in throughput_metrics_to_push:
record = PerformanceRecord.throughput(metric, result[metric], {**meta, 'qps': result['config']['rate']},
when=start_time)
print(record)
tracker.push("ci_tgi_performances_tracker", record)
# record=PerformanceRecord.latency("TIME_TO_FIRST_TOKEN", 100,{})
def flatten(l: list[str]) -> dict[str, str]:
d = {}
for e in l:
e = e.split('=')
d[e[0]] = e[1]
return d
if __name__ == '__main__':
main()