diff --git a/optimum/intel/openvino/modeling_diffusion.py b/optimum/intel/openvino/modeling_diffusion.py index 8cfc9529a..c09fed8a5 100644 --- a/optimum/intel/openvino/modeling_diffusion.py +++ b/optimum/intel/openvino/modeling_diffusion.py @@ -162,10 +162,11 @@ def __init__( "Please provide `compile=True` if you want to use `compile_only=True` or set `compile_only=False`" ) - if not isinstance(unet, openvino.runtime.CompiledModel): + main_model = unet if unet is not None else transformer + if not isinstance(main_model, openvino.runtime.CompiledModel): raise ValueError("`compile_only` expect that already compiled model will be provided") - model_is_dynamic = model_has_dynamic_inputs(unet) + model_is_dynamic = model_has_dynamic_inputs(main_model) if dynamic_shapes ^ model_is_dynamic: requested_shapes = "dynamic" if dynamic_shapes else "static" compiled_shapes = "dynamic" if model_is_dynamic else "static" diff --git a/tests/openvino/test_modeling.py b/tests/openvino/test_modeling.py index 2a597276f..645b1563c 100644 --- a/tests/openvino/test_modeling.py +++ b/tests/openvino/test_modeling.py @@ -67,6 +67,8 @@ from optimum.exporters.openvino.model_patcher import patch_update_causal_mask from optimum.intel import ( + OVDiffusionPipeline, + OVFluxPipeline, OVModelForAudioClassification, OVModelForAudioFrameClassification, OVModelForAudioXVector, @@ -107,7 +109,9 @@ from optimum.intel.utils.import_utils import is_openvino_version, is_transformers_version from optimum.intel.utils.modeling_utils import _find_files_matching_pattern from optimum.utils import ( + DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER, DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER, + DIFFUSION_MODEL_TRANSFORMER_SUBFOLDER, DIFFUSION_MODEL_UNET_SUBFOLDER, DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER, DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER, @@ -140,7 +144,8 @@ def __init__(self, *args, **kwargs): self.OV_MODEL_ID = "echarlaix/distilbert-base-uncased-finetuned-sst-2-english-openvino" self.OV_DECODER_MODEL_ID = "helenai/gpt2-ov" self.OV_SEQ2SEQ_MODEL_ID = "echarlaix/t5-small-openvino" - self.OV_DIFFUSION_MODEL_ID = "hf-internal-testing/tiny-stable-diffusion-openvino" + self.OV_SD_DIFFUSION_MODEL_ID = "hf-internal-testing/tiny-stable-diffusion-openvino" + self.OV_FLUX_DIFFUSION_MODEL_ID = "katuni4ka/tiny-random-flux-ov" self.OV_VLM_MODEL_ID = "katuni4ka/tiny-random-llava-ov" def test_load_from_hub_and_save_model(self): @@ -337,7 +342,7 @@ def test_load_from_hub_and_save_seq2seq_model(self): @require_diffusers def test_load_from_hub_and_save_stable_diffusion_model(self): - loaded_pipeline = OVStableDiffusionPipeline.from_pretrained(self.OV_DIFFUSION_MODEL_ID, compile=False) + loaded_pipeline = OVStableDiffusionPipeline.from_pretrained(self.OV_SD_DIFFUSION_MODEL_ID, compile=False) self.assertIsInstance(loaded_pipeline.config, Dict) # Test that PERFORMANCE_HINT is set to LATENCY by default self.assertEqual(loaded_pipeline.ov_config.get("PERFORMANCE_HINT"), "LATENCY") @@ -391,6 +396,71 @@ def test_load_from_hub_and_save_stable_diffusion_model(self): del pipeline gc.collect() + @require_diffusers + @unittest.skipIf( + is_transformers_version("<", "4.45"), + "model tokenizer exported with tokenizers 0.20 is not compatible with old transformers", + ) + def test_load_from_hub_and_save_flux_model(self): + loaded_pipeline = OVDiffusionPipeline.from_pretrained(self.OV_FLUX_DIFFUSION_MODEL_ID, compile=False) + self.assertIsInstance(loaded_pipeline, OVFluxPipeline) + self.assertIsInstance(loaded_pipeline.config, Dict) + # Test that PERFORMANCE_HINT is set to LATENCY by default + self.assertEqual(loaded_pipeline.ov_config.get("PERFORMANCE_HINT"), "LATENCY") + loaded_pipeline.compile() + self.assertEqual(loaded_pipeline.unet.request.get_property("PERFORMANCE_HINT"), "LATENCY") + batch_size, height, width = 2, 16, 16 + inputs = { + "prompt": ["sailing ship in storm by Leonardo da Vinci"] * batch_size, + "height": height, + "width": width, + "num_inference_steps": 2, + "output_type": "np", + } + + np.random.seed(0) + torch.manual_seed(0) + pipeline_outputs = loaded_pipeline(**inputs).images + self.assertEqual(pipeline_outputs.shape, (batch_size, height, width, 3)) + + with TemporaryDirectory() as tmpdirname: + loaded_pipeline.save_pretrained(tmpdirname) + pipeline = OVDiffusionPipeline.from_pretrained(tmpdirname) + self.assertIsInstance(loaded_pipeline, OVFluxPipeline) + folder_contents = os.listdir(tmpdirname) + self.assertIn(loaded_pipeline.config_name, folder_contents) + for subfoler in { + DIFFUSION_MODEL_TRANSFORMER_SUBFOLDER, + DIFFUSION_MODEL_TEXT_ENCODER_SUBFOLDER, + DIFFUSION_MODEL_TEXT_ENCODER_2_SUBFOLDER, + DIFFUSION_MODEL_VAE_ENCODER_SUBFOLDER, + DIFFUSION_MODEL_VAE_DECODER_SUBFOLDER, + }: + folder_contents = os.listdir(os.path.join(tmpdirname, subfoler)) + self.assertIn(OV_XML_FILE_NAME, folder_contents) + self.assertIn(OV_XML_FILE_NAME.replace(".xml", ".bin"), folder_contents) + + compile_only_pipeline = OVDiffusionPipeline.from_pretrained(tmpdirname, compile_only=True) + self.assertIsInstance(compile_only_pipeline, OVFluxPipeline) + self.assertIsInstance(compile_only_pipeline.transformer.model, ov.runtime.CompiledModel) + self.assertIsInstance(compile_only_pipeline.text_encoder.model, ov.runtime.CompiledModel) + self.assertIsInstance(compile_only_pipeline.text_encoder_2.model, ov.runtime.CompiledModel) + self.assertIsInstance(compile_only_pipeline.vae_encoder.model, ov.runtime.CompiledModel) + self.assertIsInstance(compile_only_pipeline.vae_decoder.model, ov.runtime.CompiledModel) + + np.random.seed(0) + torch.manual_seed(0) + outputs = compile_only_pipeline(**inputs).images + np.testing.assert_allclose(pipeline_outputs, outputs, atol=1e-4, rtol=1e-4) + del compile_only_pipeline + + np.random.seed(0) + torch.manual_seed(0) + outputs = pipeline(**inputs).images + np.testing.assert_allclose(pipeline_outputs, outputs, atol=1e-4, rtol=1e-4) + del pipeline + gc.collect() + @pytest.mark.run_slow @slow def test_load_model_from_hub_private_with_token(self):