-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy path06_logistic_regression.py
57 lines (46 loc) · 1.78 KB
/
06_logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from torch import tensor
from torch import nn
from torch import sigmoid
import torch.nn.functional as F
import torch.optim as optim
# Training data and ground truth
x_data = tensor([[1.0], [2.0], [3.0], [4.0]])
y_data = tensor([[0.], [0.], [1.], [1.]])
class Model(nn.Module):
def __init__(self):
"""
In the constructor we instantiate nn.Linear module
"""
super(Model, self).__init__()
self.linear = nn.Linear(1, 1) # One in and one out
def forward(self, x):
"""
In the forward function we accept a Variable of input data and we must return
a Variable of output data.
"""
y_pred = sigmoid(self.linear(x))
return y_pred
# our model
model = Model()
# Construct our loss function and an Optimizer. The call to model.parameters()
# in the SGD constructor will contain the learnable parameters of the two
# nn.Linear modules which are members of the model.
criterion = nn.BCELoss(reduction='mean')
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Training loop
for epoch in range(1000):
# Forward pass: Compute predicted y by passing x to the model
y_pred = model(x_data)
# Compute and print loss
loss = criterion(y_pred, y_data)
print(f'Epoch {epoch + 1}/1000 | Loss: {loss.item():.4f}')
# Zero gradients, perform a backward pass, and update the weights.
optimizer.zero_grad()
loss.backward()
optimizer.step()
# After training
print(f'\nLet\'s predict the hours need to score above 50%\n{"=" * 50}')
hour_var = model(tensor([[1.0]]))
print(f'Prediction after 1 hour of training: {hour_var.item():.4f} | Above 50%: {hour_var.item() > 0.5}')
hour_var = model(tensor([[7.0]]))
print(f'Prediction after 7 hours of training: {hour_var.item():.4f} | Above 50%: { hour_var.item() > 0.5}')